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ABSTRACT

In a change-point detection problem, a sequence of signals
switches from one distribution to another at an unknown time step,
and the goal is to quickly and reliably detect this change. By provid-
ing new insight into signal processing and data analysis, graph signal
processing promises various applications including image process-
ing and sensor network analysis, and becomes an emerging field of
research. In this work, we formulate the problem of change-point
detection on graph. Under the reasonable assumption of normality,
we propose a CUSUM-based algorithm for change-point detection
with an arbitrary, unknown and perhaps time-varying mean shift af-
ter the change-point. We further propose a decentralized, distributed
algorithm, which requires no fusion center, to reduce computational
complexity, as well as costs and delays of communication. Numer-
ical results on both synthetic and real-world data demonstrate that
our algorithms are efficient and accurate.

Index Terms— Change-point detection, graph signal process-
ing, CUSUM, distributed algorithm

1. INTRODUCTION

Detecting the abrupt change of distribution in a sequence of sig-
nals and data is a fundamental problem in various applications, such
as quality control [1] and anomaly detection [2]. Numerous works
have been devoted to the problem of change-point detection, among
which methods based on cumulative sum (CUSUM) [3] are well-
formulated and widely used. Moreover, CUSUM has a recursive
form and therefore can proceed in an online manner, which enjoys
memory and computation efficiency. While CUSUM was first pro-
posed to tackle with a single data stream, CUSUM-based detec-
tion algorithms utilizing information from multiple sensors, i.e., in a
high-dimensional situation, have been proposed [2, 4, 5, 6, 7] to han-
dle the increasingly complicated modern sensing systems. [7] pro-
posed a fully distributed algorithm that requires only communication
between neighboring vertices and no fusion center, which reduces
the computational complexity, as well as costs and delays of com-
munication. While CUSUM requires knowledge of pre-change and
post-change distributions, parameters of the post-change distribution
are usually unknown in practice. One typical method to tackle this
problem is generalized likelihood ratio (GLR) [8], which replaces
unknown parameters with their maximum likelihood estimates using
previous signal values. Algorithms that conduct joint estimation and

The authors are with the Department of Electronic Engineering, Ts-
inghua University, Beijing 100084, China. This work was partially sup-
ported by National Natural Science Foundation of China (NSFC 61571263,
61531166005), the National Key Research and Development Program of
China (Project No. 2016YFE0201900, 2017YFC0403600), and Tsinghua
University Initiative Scientific Research Program (Grant 2014Z01005). The
corresponding author of this work is Y. Gu (E-mail: gyt@tsinghua.edu.cn).

Edges

Vertices

Signals

Change-point

Fig. 1. Change-point detection on graph.

detection based on either GLR [6, 9] or other methods [10] have been
proposed, but they are generally less efficient than pure CUSUM.

In many situations, a sensor network can be modeled as a graph,
where sensors taking sequential measurements of different variables
can be viewed as vertices of the graph. Naturally, the measurements
residing on the vertices can be modeled as a graph signal [11]. Graph
signal processing (GSP) [11, 12] is an emerging field of research in
recent years. Classic concepts in signal processing, such as Fourier
transform and filtering, can be extended to the framework of GSP.

In this paper, we formulate the problem of change-point detec-
tion of Gaussian graph signals. Fig. 1 is an illustrative example. We
assume that the variance and pre-change mean of the graph signal
are known, but the post-change mean is arbitrary, unknown and per-
haps time-varying. In this situation, we first propose a centralized
algorithm, which conducts detection without estimation. Then, in
light of the distributed algorithm in a recent work [7], we propose
a decentralized, distributed variant of our algorithm that fits in our
problem formulation. Finally, we validate the effectiveness of our
methods with both synthetic and real-world data.

This work is different from previous works on change-point de-
tection in three ways. First, for the case of unknown parameters
of post-change distribution, while previous works conducted joint
estimation and detection, we obtain a qualified score for CUSUM
by operations of maximization and correction, and conduct detec-
tion without estimation. Therefore, our algorithm is as efficient as
pure CUSUM, and able to directly handle the case of time-varying
post-change parameters. Second, compared with previous works in
a high-dimensional setting, we adopt the framework of GSP and uti-
lize the graph structure. A priori on the Fourier transform of graph
signals can help to improve performance of our algorithm. Finally,
while our distributed algorithm is a direct extension of the recent
work [7], the problem settings are different, as [7] assumes that mea-
surements are i.i.d. among both time steps and sensors, and that
pre-change and post-change distributions are known, while based on
an additional assumption of normality, we assume that post-change
parameters are unknown and even time-varying.
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2. PRELIMINARY

2.1. Change-point detection

For time t = 1, 2, 3, . . . , we have a sequence of independent signals
xt ∈ RN , where N = 1 for the scalar case and N > 1 for high-
dimensional case. Given a change-point Tc, for 1 ≤ t < Tc, xt ∼
P0 under hypothesis H0; for t ≥ Tc, xt ∼ P1 under H1. The
goal is to detect the change at stopping time Ts, and achieve a small
detection delay Ts − Tc while keeping a low false alarm rate.

Definition 1 (CUSUM [3]). Given measurements {xt}, we as-
sign a score Lt to each measurement, which is negative or around
zero under H0 and positive under H1. Then Ts = inf{t > 0 :
max1≤i≤t

∑t
k=i L

k ≥ b} for some threshold b.

A commonly used score for CUSUM is log-likelihood ratio
(LLR), Lt = log(f1(xt)/f0(xt)), where f0 and f1 are probability
density functions of distributions P0 and P1, respectively.

The recursive form of CUSUM [3] is as follows. We initialize
the statistic y0 = 0, then yt = max{yt−1 +Lt, 0} for t = 1, 2, . . . ,
and Ts = inf{t > 0 : yt ≥ b}. The recursive form of CUSUM
proceeds in an online manner and is very efficient in time and space.

Definition 2 (ARL [3]). Average running length ARL = E[Ts] is
the expected number of time steps before the algorithm detects the
change.

ARL is a popular measure to evaluate a change-point detection
algorithm. One interesting case is when hypothesis H0 holds all
the time, and we denote it as ARL0. This can be viewed as the
expected number of time steps before a false alarm occurs. Another
interesting case is when H1 holds all the time, and we denote it as
ARL1. This can be viewed as the average detection delay. A good
detection algorithm should achieve a large ARL0 to control false
alarm rate, and a small ARL1 to quickly response to the change.

2.2. Graph signal processing

In GSP, a signal x ∈ RN is defined on a graph G = (V,E) with
|V | = N vertices. The graph can be represented by the adjacent
matrix A ∈ {0, 1}N×N , where Aij = 1 if vertex i and j are con-
nected by an edge and Aij = 0 otherwise. The graph Laplacian is
defined as L = D−A, where D is diagonal and Dii =

∑N
j=1Aji.

For an undirected graph, L is symmetric and semi-positive definite.
We refer to the eigen-decomposition as L = VΛVT, where eigen-
values in Λ is sorted in ascend.

Definition 3 (Fourier transform [12]). The Fourier transform of a
graph signal x is x̂ = VTx, and the inverse transform is x = Vx̂.
x is K-bandlimited if x̂i = 0, ∀i ∈ {K + 1, . . . , N}.

In practice, the graph signal is usually smooth and (approxi-
mately) bandlimited with appropriately constructed graph structure.

3. ALGORITHMS FOR CHANGE-POINT DETECTION

A sequence of graph signals xt ∈ RN i.i.d. follow distribution P0

for t < Tc and P1 for t ≥ Tc, where P0 and P1 are Gaussian
distributions N (µ,Σ) with µ = µ0 and µ1, respectively. Σ is
diagonal and Σii = σ2

i , i = 1, 2, . . . , N . For simplicity, we assume
that σ2

i = σ2, ∀i ∈ {1, 2, . . . , N}, although we will show that the
analysis can be easily extended to the more general case of Σ. We
also assume that µ0 and σ2 are known, as they can be estimated

Algorithm 1 Centralized Change-point Detection
Input: Number of vertices N , µ0 and its bandwidth K, Gaussian

variance σ2, threshold b.
1: Initialize: y0 = 0.
2: for t = 1, 2, . . . do
3: Projection: r← xt − µ0, r̂← VT r, r̂h ← r̂K+1:N .
4: LLR: Lt ← ‖r̂h‖22/(2σ2) .
5: Correction: Lt ← Lt − (N −K)/2.
6: CUSUM: yt ← max(yt−1 + Lt, 0).
7: Inference: if yt ≥ b, then Ts ← t, detection is done.
8: end for

Output: Stopping time Ts.

from historical data. However, µ1 is unknown to us, because it is
the result of an unexpected and unpredictable event. Moreover, the
post-change mean can be time-varying, and we will show that our
analysis and algorithms still apply to this case.

3.1. Case 1: emerging high-frequency component

A special case of concern is that, in a normal state (H0), the signal
is smooth and bandlimited, and in the abnormal state (H1), a high-
frequency, non-smooth component (e.g., an anomaly) appears and
results in a full-band signal. In this case, µ1 = µ0+Vµ̂h, where µ0

is K-bandlimited and µ̂h is the Fourier transform of the emerging
high-frequency component, i.e., for any i in {1, 2, . . . ,K}, we have
that the i-th entry of µ̂h is zero. Under H0, there is xt = µ0 + et,
where et ∼ N (0, σ2I), and LLR Lt = log(f1/f0) = (‖et‖22 −
‖et−Vµ̂h‖22)/(2σ2). However, µ̂h is unknown. Our strategy is to
take the maximum,

Lt = max
µ̂h

‖et‖22 − ‖et −Vµ̂h‖22
2σ2

=
‖êth‖22
2σ2

, (1)

where êth is obtained by setting the first K entries of êt = VTet to
be zero. This can be viewed as projecting the noise onto the high-
frequency subspace. To make Lt a qualified score in CUSUM, we
need to make the correction

Lt =
‖êth‖22
2σ2

− N −K
2

, (2)

so that the expectation E[Lt|H0] = 0. Similarly, under H1,
xt = µ0 + Vµ̂h + et, Lt = ‖êth + µ̂h‖22/(2σ2) − (N −K)/2,
and E[Lt|H1] = ‖µ̂h‖22/(2σ2) > 0, which has the form of
signal-noise-ratio (SNR). The complete CUSUM-based algorithm
is demonstrated in Algorithm 1. It is a centralized algorithm, since
the computation of Lt, update of yt and inference are conducted by
a center collecting information from all vertices.

We provide some further explanations for the proposed algo-
rithm. The operation of maximization in (1) actually says that
we replace (not estimate) the unknown µ1 − µ0 with the high-
frequency component of the current measurement xt, including the
noise. Compared with GLR, the proposed method is more flexible
and efficient in computation and memory as no historical obser-
vations are cached for estimating µ1 − µ0. In other words, the
performance of Algorithm 1 do not rely on the quality of the estima-
tion of unknown post-change parameters. As a result, Algorithm 1
can even deal with the case when the post-change mean µ1 is vary-
ing over time, which is difficult for joint estimation and detection
algorithms. For simplicity of analysis, by default we still assume
that the post-change mean is constant over time in the remaining of
this paper.
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Remark 1. Case 1 essentially says that µ1 − µ0 lies in a subspace
spanned by a subset Ω ⊆ {1, 2, . . . , N} of V’s columns. By default
we assume that Ω = {K + 1, . . . , N}, which is unnecessary. For
example, another important case is when all vertices share the same
mean shift, in which case Ω = {1}.

3.2. Case 2: arbitrary change

Now we consider a more general case where µ0 and µ1 are both
arbitrary and full-band. Without loss of generality, we let µ0 = 0,
because we can otherwise conduct detection from xt−µ0. The trick
is that, since µ0 = 0 and µ1 is full-band, we set bandwidth K = 0
in previous analysis, and simplify score Lt in Algorithm 1 as

Lt =
‖r̂h‖22
2σ2

− N −K
2

=
‖r‖22
2σ2

− N

2
. (3)

The Fourier transform and projection steps can be omitted. This
further simplifies the computation, and in this case, Algorithm 1 is
as efficient as the original recursive form of CUSUM.

Remark 2. The analysis can be easily extended to the more general
case when σ2

i is not necessarily equal to σ2
j , i 6= j. We modify (3) as

Lt = (
∑N
i=1 r

2
i /σ

2
i −N)/2. It is easy to check that, E[Lt|H0] = 0,

and E[Lt|H1] =
∑N
i=1(µ2

1i/(2σ
2
i )). In the remaining of this paper,

by default we still assume that Σ = σ2I for simplicity.

3.3. A decentralized distributed algorithm

While the centralized algorithm is recursive and efficient already, in
a large-scale network the complexity of computation and, more im-
portantly, the costs and delays of communication, can be prohibitive
for deployment of a sensor system in practice. We propose a de-
centralized distributed algorithm for detection in case 2, as demon-
strated in Algorithm 2, which is a direct extension of [7]. The only
difference is how the CUSUM score Ltv is obtained: in [7] it is as-
sumed that LLR is readily available, while in Algorithm 2 we use
the method of maximization and correction to handle unknown post-
change parameters, provided the additional assumption of normal-
ity. Note that one result of the maximization in inference statistic
maxv z

t
v is that, it will slowly increase under H0 even when we

make the correction on Ltv and have E[Lt|H0] = 0. Therefore, we
need an over-correction of Ltv with a small positive parameter δ such
that E[Lt|H0] = −δ < 0 and thus the increase under H0 is sup-
pressed, while the detection delay is only mildly affected if SNR is
relatively high 1. Provided Ltv , the remaining procedure is the same
as in [7]. Each vertex conducts local CUSUM computation, and
communicates the increase in statistic ytv with vertices in its neigh-
bor set N(v) (including vertex v itself). When the statistic ztv of any
one of the vertices exceeds the threshold, it alarms and the detection
is done. Note that the non-negative weight matrix of communication
W satisfies

∑
u∈N(v)Wvu = 1, ∀v. Under the framework of GSP,

we have a natural link between W and the graph structure, i.e.,Wvu

is non-zero if and only if v = u or v and u are connected by an edge.

3.4. Discussions

3.4.1. A first-step analysis on ARL0 and ARL1

While rigorous analysis on the lower bound of ARL0 and upper
bound of ARL1 is beyond the scope of this short paper, we briefly

1It is also reasonable to make over-correction in the centralized algorithm
to further lower false alarm rate, although it is not as necessary and essential
as in the decentralized case.

Algorithm 2 Decentralized Distributed Change-point Detection

Input: Number of vertices N , Gaussian variance σ2, threshold b,
over-correction parameter δ.

1: Initialize: y0v = 0, z0v = 0, ∀v ∈ {1, 2, . . . , N}.
2: for t = 1, 2, . . . do
3: for v ∈ {1, 2, . . . , N} do
4: LLR: Ltv ← |xtv|2/(2σ2).
5: Correction: Ltv ← Ltv − 1/2− δ.
6: Local CUSUM: otv ← yt−1

v , ytv ← max(yt−1
v + Ltv, 0).

7: Communication: ztv ←
∑
u∈N(v)Wvu(zt−1

u + ytu − otu).
8: Inference: if maxv z

t
v ≥ b, then Ts ← t, detection is done.

9: end for
10: end for
Output: Stopping time Ts.

provide some hints. Here, we focus on the centralized algorithm in
case 1. For ARL0, we are concerned with the distribution of Lt un-
derH0. Since r = e in this case, (3) becomes Lt = ‖êth‖22/(2σ2)−
(N−K)/2 = (

∑N
i=K+1

(
êti/σ

)2−(N −K))/2, where êti denotes
the i-th entry of the vector êt, and there is êti/σ ∼ N (0, 1). That is,
Lt follows Chi-square distribution with degree of freedom N −K,
with simple scale and shift. Notice that the distribution is only de-
termined by N − K, and has nothing to do with noise variance or
other parameters. According to Lemma 1 in [13], we can bound the
tails of the distribution of Lt as follows.

Lemma 1. Under H0, we have P (Lt ≥
√

(N −K)c+ c) ≤ e−c,

and P (Lt ≤ −
√

(N −K)c) ≤ e−c.

As for ARL1, given E[Lt|H1] = ‖µ̂h‖22/(2σ2), for sufficiently
large threshold b, we can estimate the detection delay as Ts − Tc ≈
b/E[Lt|H1] = 2bσ2/‖µ̂h‖22. We note that case 1 is still meaningful,
even when case 2 is more general. In case 1, we utilize the graph
structure, and project noise onto a subspace, which reduces the effect
of noise compared with case 2. That is, the distribution of Lt is more
concentrated around its mean, while E[Lt|H0] and E[Lt|H1] remain
unchanged. This leads to a lower false alarm rate, and more stable
linear increase in yt. Therefore, when we know a priori that µ1−µ0

lies in a subspace spanned by only a known subset of V’s columns,
then we still prefer to apply case 1 to improve performance in ARL.

As for distributed algorithm, we refer readers to [7] for a more
complete analysis of its behaviors and performance. However, to be
noted, in our problem, µ1v varies for different vertex v, which re-
sults in various increaments of ytv among vertices under H1. When
vertices are densely connected, there will be an effect of average
in the communication step of Algorithm 2, and the expected in-
creament of statistic maxv z

t
v at a time step can be estimated as

‖µ1‖22/(2Nσ2) − δ. On the other hand, when the graph is sparse,
vertex v with a large µ1v will play the major role, leading to a faster
increase of maxv z

t
v under H1 and thus a smaller detection delay.

The cost, however, is that the effect of noise under H0 is also less
averaged, and therefore false alarm rate may increase.

3.4.2. Scalability

From section 3.4.1, as size of the graph N increases, Lt is less
concentrated around its mean under H0. This seems to result in a
higher false alarm rate. However, in many cases it is reasonable to
assume that ‖µ1−µ0‖22 (and thus E[Lt|H1]) also increases withN .
Therefore, for a large-scale network we just need to accordingly set
a higher threshold b to achieve similar performance in ARL.
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Fig. 2. Results of the detection process on synthetic data.

3.4.3. Extension to general distributions

Although we assume normality in this paper, we briefly show how
to extend the method to the case of more general distributions. Here
we focus on Algorithm 1 for case 2. For general P0, P1, LLR =
LLR(xt, θ1) = log(f1(xt|θ1)/f0(xt)), where θ1 denotes unknown
post-change parameters in f1. By maximization and correction, we
set the score for CUSUM as Lt = maxθ1 LLR(xt, θ1) − C, for
some constant C, such that E[Lt|H0] ≤ 0 and E[Lt|H1] > 0. The
remaining procedure in Algorithm 1 remains the same.

4. NUMERICAL EXPERIMENTS

4.1. Synthetic data

We test our methods on an undirected graph with N = 100 vertices,
where each pair of vertices are connected by an edge with probabil-
ity p = 0.3. We focus on case 2, i.e., we set µ0 = 0, and µ1 is
randomly generated and scaled such that ‖µ1‖2 = 1. White Gaus-
sian noise level σ = 0.2. In this setting, µ1 is immersed in noise.
We first set Tc = 8000 and see how Algorithm 1 and 2 work out.
Then we set Tc = 1 and Tc = ∞, respectively, to examine ARL1

and ARL0 of the centralized algorithm. The optimal design of W
in the distributed algorithm is beyond the scope of this paper, and we
simply set Wvu = 1/|N(v)|.

Numerical results are illustrated in Fig. 2. (a) shows that statis-
tic yt in Algorithm 1 stays low before Tc (indicated by the verti-
cal dashed line), and linearly increases after Tc, with a slope of
12.5 = ‖µ1‖22/(2σ2), as expected. (b) shows similar results for
Algorithm 2. Here we set δ = 0, i.e., no over-correction, to see how
the statistic slowly increases even under H0. The slope of maxv z

t
v

after Tc is approximately 0.125 = ‖µ1‖22/(2Nσ2). In comparison,
for a sparse graph with p = 0.02, both ARL0 and ARL1 decrease
with the same b, and the result is less stable, which validates our
analysis in section 3.4.1. (c) and (d) are the curves of ARL1 and
ARL0 (in natural logarithm), with threshold b varying from 500 to
4000. The emperical means and standard errors are obtained from
400 independent trials. (c) shows that ARL1 is linear in b, as ex-
pected. More interestingly, with sufficiently large b, ARL0 seems to
be exponential in b, though we have not rigorously proven this.

(a) Manhattan road map.
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Fig. 3. Change-point detection on Manhattan taxi pickup data.

4.2. Real-world data

We test the centralized algorithm (general Σ, case 2) in anomaly de-
tection of daily taxi pickups in New York City. We view the road map
of Manhattan, as illustrated in Fig. 3 (a), as a graph, withN = 13679
intersections being its vertices. Each taxi pickup is assigned to the
closest intersection, and signal xt ∈ NN consists of taxi pickup
numbers at each intersection in day t. Given {xt}365t=1 in year 2014,
we estimate µ0 and Σ by standard statistical routines. For vertices
with constant zero taxi pickup, we set σ2

i = 0.01. Then, we sim-
ulate three additive anomalies in the data of 2015 after Tc = 150:
(1) add a constant 5 to the daily taxi pickup numbers of 112 ver-
tices, indicated by green color in Fig. 3 (a); (2) add an increament
to green vertices, uniformly drawn from {1, 2, . . . , 9} and indepen-
dent among time steps and vertices; (3) add an increament to 112
randomly chosen vertices, uniformly and independently drawn from
{1, 2, 3, 4}. Parameters of these three anomalies are unknown to the
algorithm. Also, they are of small sizes, compared with the original
daily taxi pickups.

Numerical results are demonstrated in Fig. 3 (b). (Note that re-
sult for the third anomaly varies depending on the set of vertices cho-
sen.) It shows that statistic yt linearly increases after Tc for all three
cases, which indicates our algorithm’s ability to detect various types
of anomalies with unknown parameters. Note that the performance
of our algorithm in anomaly detection does not rely on the size of
anomaly alone, but instead on SNR, which ensures its success with
an anomaly of relatively small size.

5. CONCLUSION

In this work, we formulate the problem of change-point detection
for Gaussian graph signals. In the case of unknown and perhaps
time-varying post-change mean, we use a method of maximization
and correction to obtain a qualified score for CUSUM, and conduct
detection without estimation. We further propose a decentralized
distributed algorithm, in light of [7], to reduce the costs and delays
of computation and communication. Future work includes rigorous
analysis on ARL0 and ARL1 of both centralized and decentralized
algorithms, the optimal choice of communication weight matrix W
in the distributed algorithm, and change-point detection of graph sig-
nals with general pre-change and post-change distributions.
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