CONVERGENCE ANALYSIS ON A FAST ITERATIVE PHASE RETRIEVAL ALGORITHM WITHOUT INDEPENDENCE ASSUMPTION

Gen Li, Yuchen Jiao, and Yuantao Gu
Department of Electronic Engineering, Tsinghua University, Beijing, China
Email: \{g-li16, jiao-14\}@mails.tsinghua.edu.cn, gyt@tsinghua.edu.cn

Background

- Phase Retrieval problem
 - Recover a vector from magnitude measurements \(y_r = (|x_r|^2) / r = 1, 2, \ldots, m \)
 - Non-convex quadratic programs
- Algorithms
 - Classical
 - Error Reduction (ER) and its variants
 - Recently developed
 - PhaseLift [Candes’ 13]
 - Wirtinger Flow algorithm [Candes’ 15]
 - Kaczmarz algorithm [Wei’s 15]
 - Row action method, low computation complexity

Main Result

- Convergence result for KA in real case:
 - \(x^* \in \mathbb{R}^n, e_t = x_t - x^* \)
 - \(\alpha := \frac{m}{n} \)
 - With probability \(1 - e^{-\Omega} \) where \(c \) is a constant depending on \(\epsilon \)
 - \(\mathbb{E} \left[\left| e_t \right|^2 \right] - \mathbb{E} \left[\left| e_{t-1} \right|^2 \right] \leq - \left(1 - \frac{p}{\alpha} \right) \left(1 - \frac{1}{\sqrt{\alpha - p}} \right) - \frac{2p \ln \alpha - e \vert \alpha - p \vert}{\alpha} + \frac{3p}{\alpha} \left(1 + \frac{1}{\sqrt{\alpha - p}} + \frac{2\ln \alpha}{\alpha} \right) \epsilon \)
 - \(p \in (0, \alpha) \) is a parameter determined by \(|e_{t-1}| \)
 - Linear rate of convergence still holds without IA

Sketch of Proof

- Take expectation with respect to \(r \), instead of \(|e_{t-1}| \)
- Based on random matrix theory, find uniform bounds for arbitrary \(|e_{t-1}| \)

- \(e_t = (1 - \frac{1}{\ln n}) e_{t-1} + e_{t-2} \) \(\sum r \left(\arg \left(a_r^T x^* x_r \right) \right) + 4 \left(e_{t-2}^* x^* \right)^2 \) \(||e_t|| \leq ||e_{t-1}||^2 - \frac{1}{m} \ leq \sum \left(\frac{u^* e_{t-1}}{|a_r|^2} \right)^2 + \frac{3}{m} \ leq \sum \left(\frac{u^* e_{t-1}}{|a_r|^2} \right)^2 \)
- Using probability inequalities to get the uniform bounds for the latter two items
- Reference for details

Preliminary

- Phase Retrieval via Randomized Kaczmarz algorithm (KA) for real case:
 - Input: \((a_r, y_r), r = 1, \ldots, m \), initialization \(x_0 \) using the spectral method, \(t = 1 \)
 - Ensure: \(x_r \) as an estimate for \(x^* \)
 - while \(t \leq T \) do
 1. choose \(r \) randomly from \(\{1, \ldots, m\} \) uniformly
 2. \(x_t \leftarrow x_{t-1} + \frac{y_r a_r^T (a_r^T x_{t-1}) - y_r a_r^T x^*}{|a_r|^2} \)
 - end while
 - Simulation result: linear rate of convergence

- Independence assumption (IA)
 - Iterative variable \(x_t \) independent with measurements \(\langle a_r, y_r \rangle \)

Random Matrix Theory

- A \(\in \mathbb{R}^{n \times 2} \) entries \(\sim N(0,1/n) \) iid
 - With probability at least \(1 - 2e^{-t^2/2} \)

- \(\Phi \in \mathbb{R}^{n \times 2} \) entries \(\sim N(0,1/n) \) iid
 - With probability at least \(1 - 2e^{-t^2/2} \)

Our previous analysis

 - Not rigorous: using IA

Random Matrix Theory

- A \(\in \mathbb{R}^{n \times 2} \) entries \(\sim N(0,1/n) \) iid
 - With probability at least \(1 - 2e^{-t^2/2} \)

- \(\Phi \in \mathbb{R}^{n \times 2} \) entries \(\sim N(0,1/n) \) iid
 - With probability at least \(1 - 2e^{-t^2/2} \)