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Logistic Regression

> training data {(x(), y()) j =
class label y(7)

v

1,..., N}, feature x() e RY,

two-class y() € {0,1} with assumption

p(y) =1x(D;0) = o(8Tx()) = 1

14-exp(—0Tx())

p(y) =0[x();0) =1—c(6Tx()

v

0 € R? is the model parameter to be learned

> O gives a neutral hyperplane
» minimize the negative log-likelihood
minimize /(0), (1)
where [ is the logistic loss
N . .
18) =" —log p(y|x(); ) (2)
i=1
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Sparse Logistic Regression

> 0 is assumed to be sparse

» large dimension d, small number of non-zeros
> 0; = 0 means that the jth feature is irrelevant
» feature selection

> alleviate over-fitting and enhance test accuracy

» {1 norm regularized sparse logistic regression
minimize /(0) + /]|0|1
> use {1 norm (convex relaxation of ¢y pseudo norm) to
induce sparsity

» (3 > 0 is the regularization parameter
> convex program
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Nonconvex Regularization for Sparsity: Related Works

better approximation of the £y pseudo norm
> a class of nonconvex regularized logistic regression with
constraints on norms (Loh 2013)

» difference of convex (DC) functions regularized logistic
regression (LeThi 2008, Cheng 2013, Yang 2016)

> other nonconvex regularizations in compressed sensing
(Tropp 2006, Chartrand 2007, Candes 2008, Foucart 2009,
Hyder 2010, Voronin, 2013, Chen 2014, Zhu 2015)
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Weakly Convex Sparsity Inducing Functions

Definition 1 Weakly convex sparsity inducing function J is
defined to be separable J(x) = 27:1 F(|xj|), where F : R — R,

(a) F is even, not identically zero, and F(0) = 0;

(b) F is non-decreasing on [0, c0);

(c) t— F(t)/t is nonincreasing on (0, c0);

(d) F is weakly convex with nonconvexity ¢ > 0, i.e., ( is the
smallest positive scalar such that F(t) + (t? is convex.
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Weakly Convex Regularized Sparse Logistic Regression

minimize /(0) + 5J(0) (4)

nonconvex function J follows Definition 1

v

v

difference of convex program

v

problem (4) is nonconvex for any ¢ > 0 and 8 > 0, if
X = (x(l), .. ,x(N)) e RIxN

does not have full row rank

v

/1 logistic regression is an instance when ( =0
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Proximal Gradient Descent Solving Method

» J is nonconvex, but J(x) + ¢||x||3 is convex

v

proximal operator well-defined when o3¢ < %
. 1
proxagy(v) = argmin afJ(x) + 5 x — viz (5

» separable across the d coordinates
» can have analytical solution via low-cost computation

v

proximal gradient descent update with stepsize ay > 0

Ok+1 = prox,, g5(0x — ax V1(6y)) (6)

v

VI(8x) = 20y (0 (6x7) =y ) xO
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Convergence
stepsize oy satisfies one of the following

> constant stepsize oy = « and

o< 1/ max (206, g IXIP + ¢ ")

> backtracking stepsize ay = 7" ak_1, where Slag < 1/2,
0 < n <1, and ng is the smallest nonnegative integer for

01— 02
/(9k)S/(0k_1)+<0k—0k_1,V/(ek_1)>+%

then

> [(0k) + BJ(O«) monotonically nonincreasing and convergent

> [|6x — Ok—1ll2 =0
> any limit point of {8} is a critical point of the objective function
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Proximal Gradient Descent Solving Method

Table: Proximal gradient descent for problem (4)

Input: initial point 6y, ap < 1/(25¢) (or « satisfying (7)),
€tol > 0.
k :=0;
Repeat:
update 0,1 by (6) using constant or backtracking stepsize;
k=k+1;
Until [/(0x11) + BI(Ok+1) — 1(6k) — BI(Ok)| < €rol

» apply Nesterov acceleration
y
» apply stochastic gradient
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Variation 1: Acceleration

Table: Accelerated proximal gradient descent for problem (4).

Input: initial point 6y, g < 1/(25¢) (or « satisfying (7)).

k=1 1t =1, 01:00;
Repeat:
update 6y = prox,, g5(6 — arV1(6x))
according to (10) by constant or backtracking stepsize;
/ 2
update txy1 = w;

update 0411 = Oy + (tk_l) (0 — Ok_1);

tyt1
if /(Gk) + BAJ(H;() < /(0k+1) + ﬁJ(GkH):
Ok1 =0,
k. =k+1;

Until ‘/(0k+1) + BJ(0k+1) — /(0/() — ﬂj(gk)’ < €tol

Weakly Convex Regularized Sparse Logistic Regression
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Variation 2: Stochastic Gradient

use a stochastic gradient instead of the batch gradient V/(6y)
V(o) = N (a (a;fx(")) - y<">) x() (8)

» x()) randomly chosen among all training samples
» one gradient calculation using only one data point

» a common choice of diminishing stepsize
ak = ap/(1+ kyap),

where v and ag are constant
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A Specific Case

» F in J defined by minimax concave penalty (MCP)

F(t)_{ t] = ¢ e <

L t] >

(9)

RlmRl=

» proximal operator also known as firm-shrinkage operator

0 vl < B
proxge(v) = { g B v< % (10)
v ’V‘>Z

» method instantiated as lterative Firm-shrinkage Algorithm
(IFSA), above conclusions applicable

> a generalization of iterative shrinkage-thresholding
algorithm (ISTA)
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Convergence Demonstration and Comparison

» d =50, N =1000, K = 8 non-zeros in ground truth 60
» randomly generated x() and 6°, y() = 1((x(7)T9° > 0)
» choose 3 =10"12% and ¢ = 1072

> a < 7.9 according to the convergence theorem

objective value

__________ acc a=75

0 2000 4000 6000 8000 10000 12000 14000
iterations

Figure: Convergence curves of IFSA in an example. Dashed lines:
without acceleration. Solid lines: with acceleration.
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Convergence Demonstration and Comparison

> weakly convex logistic regression by accelerated IFSA and DCA
» /1 logistic regression with optimal choice § = 1071-%
» by CVXPY and FISTA (with optimal stepsize o = 25)

—= DCA
T \\ --- FISTAa =25
5 N — IFSAa =25
5 o,
B 102

f
L
t
I
!
i
!
|
i
¢
i
!
?
|
!
4
]
|
i
r

0 200 100 600 800 1000
iterations

N --= CVXPY
go4 —I=DcaA

3 «oae FISTA @ = 25
202 IFSA a = 25
3

8

@ ground truth

> running time is 0.54s for IFSA and 5.63s for DCA
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Varying Nonconvexity and Regularization Parameters

» d =50, K=5,and N =200

> randomly generated x() and 6°, y() = 1((x(7))T° > 0)
» accelerated IFSA stepsize a = 0.1

» averaged from 20 experiments

log test error

10910 beta

-0 =3 =2 -1 0 1
10910 zeta
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Non-separable Noisy Dataset

» y=1(xT0° + n > 0), where n ~ N(0, ¢?)
» find optimal parameters among 3 € [1073,10] and ¢ € [0, 10]

> averaged from 10 experiments

Table: Test error for non-separable data.

noise level /7 logistic regression weakly convex logistic regression

0.01 3.31% 0.92%
0.03 3.27% 1.48%
0.05 3.91% 1.85%
0.07 4.90% 3.39%
0.3 13.70% 12.37%
0.5 21.47% 19.70%
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Stochastic Gradient versus Batch Gradient

» §=12and ( =0.1
» batch gradient o = 15, stochastic gradient cg = 0.0005
» #grad per iteration: 1 for stochastic gradient, N for full

gradient
700 05
| — batch gradient
600, | --- stochastic gradient 04l

objective value
»
S
)
test error

8 10 0 2 4 6 8 10

2 4 6
#grad /N #grad /N
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Conclusion

> a class of weakly convex sparsity inducing functions as regularizer
in sparse logistic regression
» solution method for this class of nonconvex problem

» based on the proximal gradient descent
» low computational complexity
> convergence guarantee

» usage of Nesterov acceleration and stochastic gradient

> applied to a specific weakly convex function
> iterative firm-shrinkage algorithm

> achieve lower test error within less running time in experiments

> code available at:
http://gu.ee.tsinghua.edu.cn/publications

> extended version: “Nonconvex Sparse Logistic Regression with
Weakly Convex Regularization”. X. Shen, Y. Gu. IEEE

Transactions on Signal Processing, 2018, accepted.
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http://gu.ee.tsinghua.edu.cn/publications

Thanks for listening!
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