
1

A RIP-Based Performance Guarantee of
Covariance-Assisted Matching Pursuit

Jiayang Wang, Gen Li, Lucas Rencker, Wenwu Wang, and Yuantao Gu

Abstract—An OMP-like Covariance-Assisted Matching Pursuit
(CAMP) method has recently been proposed. Given a prior-
knowledge of the covariance and mean of the sparse coefficients,
CAMP balances the least squares estimator and the prior-
knowledge by leveraging the Gauss-Markov theorem. In this
letter, we study the performance of CAMP in the framework
of restricted isometry property (RIP). It is shown that under
some conditions on RIP and the minimum magnitude of the
nonzero elements of the sparse signal, CAMP with sparse level
K can recover the exact support of the sparse signal from
noisy measurements. l2 bounded noise and Gaussian noise are
considered in our analysis. We also discuss the extreme conditions
of noise (e.g. the noise power is infinite) to simply show the
stability of CAMP.

Index Terms—Sparse recovery, Covariance-Assisted Matching
Pursuit (CAMP), restricted isometry property (RIP), compressed
sensing.

I. INTRODUCTION

Sparse recovery refers to the problem of reconstructing a
sparse vector from a very limited number of noisy linear
measurements [?] [?]. We consider the following model:

y = Ax∗ + e (1)

where A ∈ RM×N with M < N is the sensing matrix, x∗ ∈
RN is the sparse vector with at most K (K ≪ N ) non-zero
elements, and e is an additive noise term. The aim is to find
x∗ given y and A.

In some situations the above problem may be well solved by
using greedy algorithms, including the well-known orthogonal
matching pursuit (OMP) algorithm [?]. Several works have
attempted to improve the performance of OMP by leveraging
some prior knowledge about the unknown vector to be recov-
ered [?] [?]. The work of [?] employed the prior knowledge
of the covariance and mean of the sparse representations
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by leveraging Gauss-Markov theorem to obtain performance
gains. In contrast to other matching pursuit methods using
prior knowledge, the Covariance-Assisted Matching Pursuit
(CAMP) doesn’t require the explicit prior probabilistic mod-
eling of the sparse coefficients. This makes it better suited for
applications such as image restoration [?] and audio processing
[?].

For a vector x∗, we define its support as supp(x∗) =
{i|x∗(i) ̸= 0}. In this letter, we consider the exact sup-
port recovery of sparse signals with sparsity level K, i.e.,
|supp(x∗)| = K. In the noiseless case, CAMP works as OMP
does. Thus, we shall consider the noisy case in our letter.

In this letter, we aim to derive an RIP-based condition
ensuring the exact support recovery of K-sparse signals for
the CAMP algorithm in the noisy case.

II. PRELIMINARY

A. Notations

We denote the ith column of A by ai, i.e., A =
[a1,a2, · · · ,aN ]. Here, we assume that the columns of A are
normalized, i.e., ∥ai∥2 = 1 for i = 1, · · · , N . Let Ω be the
support set of a sparse signal x, i.e., Ω = supp(x). Given
an index set Γ, we denote by AΓ a sub-matrix of A, which
is composed of the columns indexed by Γ. The temporary
solution in the t-th matching pursuit stage is denoted by
xt ∈ Rt, and the corresponding estimation of x∗ is denoted
by x̂t ∈ RN . ∥ · ∥ denotes the ℓ2 norm.

B. OMP and RIP-based Analysis

The OMP selects the most correlated atom ait with the
smallest residual vector at step t and updates the index set
Ωt = Ωt−1∪ it. It then calculates the estimated solution xt by
projecting y onto the subspace spanned by the sub-dictionary
AΩt :

xt = (AT
ΩtAΩt)−1AT

Ωty, (2)

and updates the residual rt = y −AΩtxt.
The Restricted Isometry Property (RIP) of a sensing matrix

A is often used to analyze the recovery performance of OMP.
A matrix A is said to satisfy the RIP of order K if there exists
a smallest positive constant δK such that

(1− δK)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δK)∥x∥2 (3)

for all K-sparse vectors x, where δK is called the Restricted
Isometry Constant (RIC).

There are lots of results on analyzing OMP in the noiseless
case by using the RIP. Davenport and Wakin proved that
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Algorithm 1 Orthogonal Matching Pursuit
1: Input: y, A = [a1,a2, · · · ,aN ] ∈ RM×N , Kmax, ε.
2: Initialize: t = 0, support set Ω0 = ∅, residual r0 = y.
3: while t ≤ Kmax or ∥rt∥ ≥ ε do
4: Select atom: j = argmaxĵ | < rt−1,aĵ > |;
5: Update support set: Ωt = Ωt−1 ∪ j;
6: Update estimation: xt = (AT

ΩtAΩt)−1AT
Ωty;

7: Update residual: rt = y −AΩtxt;
8: t = t+ 1;
9: end while

10: Output: ΩKmax , xKmax .

[?] under the condition δK+1 < 1
3
√
K

, OMP will accurately
recover the sparse signal without noise. To our knowledge,
[?] has proven that under the condition δK+1 < 1√

K+1
OMP

promises to succeed in the noiseless case.
In the noisy case, it has been proved in [?] that under the

RIP-based condition δK+1 < 1√
K+3

and some assumptions
on the minimum magnitude of the nonzero elements of the
input signal, OMP will accurately recover the support of the
sparse signal with noisy measurements. Further work can be
found in [?].

Next we recall some useful properties of RIP to make
preparations for further analysis.

Lemma 1. Suppose that matrix A satisfies RIP of both order
K1 and K2, where K1 ≤ K2, then δK1 ≤ δK2 .

Lemma 2. [?] If matrix A ∈ RM×N satisfies RIP of order K
and δK ≤ 1, then for any vector u ∈ RN with |supp(u)| ≤ K,

(1− δK)∥u∥ ≤ ∥ATAu∥ ≤ (1 + δK)∥u∥, (4)
1

1 + δK
∥u∥ ≤ ∥(ATA)−1u∥ ≤ 1

1− δK
∥u∥. (5)

Lemma 3. [?] Suppose that matrix A ∈ RM×N satisfies RIP
of order K. Let Γ and Θ be two disjointed index sets, i.e.,
Γ ∩ Θ = ∅, and |supp(Γ ∪ Θ)| ≤ K. Then for any vector
u ∈ RN with supp(u) ∈ Γ,

∥AT
ΘAu∥ = ∥AT

ΘAΓuΓ∥ ≤ δK∥u∥. (6)

C. Covariance-Assisted Matching Pursuit (CAMP)

Additional assumptions are made to help the recovery. We
assume that e is a zero-mean random noise component with
variance σ2, where σ2 can be estimated from the training data.
It is further assumed that the non-zero entries of x, denoted
by xΩ, are the elements of a vector with mean µΩ ∈ R|Ω|

and covariance ΛΩ ∈ R|Ω|×|Ω|, which are extracted from a
single mean µ ∈ RN and covariance Λ ∈ RN×N during the
matching pursuit stages.

Based on the above assumption, the temporary solution of
CAMP for the t-th matching pursuit stage is solved by [?]

xt = (AT
ΩtAΩt + σ2Λ−1

Ωt )
−1(AT

Ωty + σ2Λ−1
Ωt µΩt), (7)

as described in Algorithm 2. The atom selection and residual
update steps are performed in a similar way as OMP. In
noiseless case, i.e., σ2 = 0, equation (??) will reduce to (??)

Algorithm 2 Covariance-Assisted Matching Pursuit
1: Input: y, A = [a1,a2, · · · ,aN ] ∈ RM×N ,Kmax,ε.
2: Initialize: t = 0, support set Ω0 = ∅, residual r0 = y.
3: while t ≤ Kmax or ∥rt∥ ≥ ε do
4: Select atom: j = argmaxĵ | < rt−1,aĵ > |, ĵ /∈ Ωt−1;
5: Update support set: Ωt = Ωt−1 ∪ j;
6: Update estimation:

xt = (AT
ΩtAΩt + σ2Λ−1

Ωt )−1(AT
Ωty + σ2Λ−1

Ωt µΩt);
7: Update residual: rt = y −AΩtxt;
8: t = t+ 1;
9: end while

10: Output: ΩKmax , xKmax .

and CAMP degenerates to OMP. Therefore, in the following
analysis, we assume that σ2 is strictly greater than zero.

III. ANALYSIS OF CAMP

To show how CAMP works, we reshape its update equation.
By splitting (??) into to two items, we have

xt =(AT
ΩtAΩt + σ2Λ−1

Ωt )
−1AT

Ωty

+ (AT
ΩtAΩt + σ2Λ−1

Ωt )
−1σ2Λ−1

Ωt µΩt . (8)

Applying the equalities of

(A+B)−1 = (I+A−1B)−1A−1 (9)

= (B−1A+ I)−1B−1, (10)

where A and B denote any invertible matrices, to the two
items in the RHS of (??), respectively, we have

xt =(I+H−1
Ωt )

−1(AT
ΩtAΩt)−1AT

Ωty

+ (HΩt + I)−1(σ2Λ−1
Ωt )

−1σ2Λ−1
Ωt µΩt , (11)

where HΩt = σ−2ΛΩtAT
ΩtAΩt . Then (??) is further shaped

to
xt = (I+H−1

Ωt )
−1xt

LS + (I+HΩt)−1µΩt , (12)

by denoting xt
LS = (AT

ΩtAΩt)−1AT
Ωty as the least-squares

solution.
According to the equality of

(I+H−1
Ωt )

−1 + (I+HΩt)−1 = I, (13)

xt in the LHS of (??) can be understood as a weighted average
between the least-squares solution xt

LS and the prior mean
µΩt .

It is clear that σ−2ΛΩt and AT
ΩtAΩt are both positive semi-

definite matrices, and HΩt = σ−2ΛΩtAT
ΩtAΩt has the same

eigenvalues as σ−2AT
ΩtΛΩtAΩt , which can be derived from

the identity det(tI − AB) = det(tI − BA). Thus, all the
eigenvalues of the matrix HΩt , which are denoted by λi,
satisfy λi ≥ 0. It is clear that the matrices H, (I + H)−1

and (I + H−1)−1 have the corporate eigenvectors, and the
eigenvalues of (I+H)−1 and (I+H−1)−1, which are denoted
by λ

(1)
i and λ

(2)
i , can be expressed as

λ
(1)
i = λi((I+H)−1) =

1

1 + λi
,
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λ
(2)
i = λi((I+H−1)−1) =

λi

1 + λi
.

Since λi ≥ 0, we can easily conclude that

0 ≤ λ
(1)
i ≤ 1, 0 ≤ λ

(2)
i ≤ 1. (14)

As noise power σ2 increases, the weight of the prior mean
µΩt increases while the weight of least-squares estimation xt

LS

decreases. Under the condition that the noise power is infinite,
the estimation xt would converge to the prior mean µΩt , i.e.,
xt
σ2→∞ → µΩt . In this way, CAMP will be able to stay stable

under noisy conditions by employing the prior knowledge.

IV. EXACT SUPPORT RECOVERY VIA CAMP

In this section, we analyze the conditions on RIP and sparse
signals for the exact support recovery via CAMP. Both the l2
bounded noise and the Gaussian noise are considered.

A. l2 Bounded Noise

Theorem 1. Suppose that ∥e∥ ≤ ϵ1 and A satisfies the RIP
condition that

δK <
1

2 +
√
K − 1

(15)

in model (??). Define the differential vector xe = x∗−µΩ and
suppose that ∥xe∥ ≤ E. Then CAMP with stopping rule t =
K will exactly recover the support Ω of the sparse signal x∗

with sparsity level K, if the minimum magnitude of nonzero
elements of x∗ satisfies

min
i∈Ω

|x∗(i)| ≥

2δK+1(1− δK+1)E +
(
1− δK+1 + (1 + δK+1)

3
2

)
ϵ1

1− (2 +
√
K)δK+1

(16)

Proof: As above, we have already known the sparsity
level K, i.e., |Ω| = K. Since CAMP employs prior knowledge
during each iteration, the differential vector xe deserves some
attention. According to its definition, xe has the same support
as x∗, i.e., supp(xe) = Ω. xe with high energy means that
the prior knowledge reduces the algorithm’s accuracy.

Under the assumption that the sparsity level K is known, it
remains to be shown that CAMP will select the correct atom
at each stage. Our proof applies the mathematical induction
method [?]. We first suppose that CAMP selects correct indices
at the first t iterations, i.e., Ωt ⊂ Ω. It naturally holds true
when t = 1. Then, the condition

∥AT
Ωcrt∥∞ < ∥AT

Ω\Ωt
rt∥∞ (17)

and
∥AT

Ωt
rt∥∞ < ∥AT

Ω\Ωt
rt∥∞ (18)

can guarantee that CAMP selects a correct index, i.e., it ∈ Ω
and it /∈ Ωt, at the t-th iteration for t = 0, 1, · · · ,K − 1. The
inequality (??) guarantees that CAMP won’t select a wrong
atom and (??) promises to avoid repetition of the same atom.

We first consider condition (??). LHS of (??) can be directly
derived from the update solution (??):

AT
Ωt
rt = σ2Λ−1

Ωt (x
t − µΩt). (19)

Unlike OMP, CAMP loses some energy at each iteration and
will not guarantee that the same atom won’t be selected twice.
However, we have little knowledge about the estimated covari-
ance Λ, which means that we cannot make more assumptions
on the matrix Λ−1

Ωt . Thus, the upper bound of ∥AT
Ωt
rt∥∞ and

the solution to (??) won’t be that meaningful. Here, we follow
[?] to avoid multiple selection of the same atom by selecting
atoms from Ω\Ωt at the (t+1)-th stage and we appreciate the
work of [?] that solves this problem by adding a multivariate
Gaussian prior on the sparse signal x∗.

Now we can apply previous work [?] on OMP to obtain an
upper bound for the LHS of (??)

∥AT
Ωcrt∥∞ ≤ δK+1∥x∗ − x̂t∥+ ϵ1. (20)

Using the triangle inequality, we can relax the upper bound as

∥AT
Ωcrt∥∞ ≤ δK+1∥x∗

Ωt − xt∥+ δK+1∥x∗
Ω\Ωt∥+ ϵ1. (21)

Next, we consider the RHS of (??). Since
|supp(AT

Ω\Ωt
rt)| = K − t, we have

∥AT
Ω\Ωt

rt∥∞ ≥
∥AT

Ω\Ωtrt∥
√
K − t

. (22)

Notice that

∥AT
Ω\Ωtrt∥ = ∥AT

Ω\Ωt(A(x∗ − x̂t) + e)∥
= ∥AT

Ω\Ωt(AΩ\Ωtx∗
Ω\Ωt +AΩt(x∗

Ωt − xt) + e)∥
≥ ∥AT

Ω\ΩtAΩ\Ωtx∗
Ω\Ωt∥

− ∥AT
Ω\ΩtAΩt(x∗

Ωt − xt)∥ − ∥AT
Ω\Ωte∥.

(23)

By Lemma 3, it holds that

∥AT
Ω\ΩtAΩ\Ωtx∗

Ω\Ωt∥ ≥ (1− δK)∥x∗
Ω\Ωt∥, (24)

and by Lemma 4, we have

∥AT
Ω\ΩtAΩt(x∗

Ωt − xt)∥ ≤ δK∥x∗
Ωt − xt∥. (25)

It has been proven in [?] that

∥AT
Ω\Ωte∥ ≤ ∥AT

Ω\Ωt∥∥e∥ ≤
√

1 + δKϵ1. (26)

Based on (??), (??), (??), and (??), we can easily verify that

∥AT
Ω\Ωt

rt∥∞ ≥ 1− δK√
K − t

∥x∗
Ω\Ωt∥

− δK√
K − t

∥x∗
Ωt − xt∥ −

√
1 + δK√
K − t

ϵ1. (27)

It follows from (??) and (??) that

∥x∗
Ωt − xt∥

=∥(I+H−1
Ωt )

−1(x∗
Ωt − xt

LS) + (I+HΩt)−1(x∗
Ωt − µΩt)∥

≤∥(I+H−1
Ωt )

−1(x∗
Ωt − xt

LS)∥+ ∥(I+HΩt)−1(x∗
Ωt − µΩt)∥

≤∥x∗
Ωt − xt

LS∥+ ∥x∗
Ωt − µΩt∥. (28)

Recall Lemma 3 and Lemma 4, it holds that

∥x∗
Ωt − xt

LS∥ = ∥x∗
Ωt − (AT

ΩtAΩt)−1AΩt(Ax∗ + e)∥
= ∥ − (AT

ΩtAΩt)−1AΩt(AΩ\Ωtx∗
Ω\Ωt + e)∥

≤ δK
1− δK

∥x∗
Ω\Ωt∥+

√
1 + δK
1− δK

ϵ1. (29)
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Then we have

∥x∗
Ωt − xt∥ ≤ δK

1− δK
∥x∗

Ω\Ωt∥+
√
1 + δK
1− δK

ϵ1 + E. (30)

To satisfy the condition (??), it’s sufficient to prove(
1− δK√
K − t

− δK+1 −
δ2K+1(1 +

√
K − t)

(1− δK+1)
√
K − t

)
∥x∗

Ω\Ωt∥

≥
(

δK√
K − t

+ δK+1

)
E

+

(
1 +

√
1 + δK√
K − t

+ (
δK√
K − t

+ δK+1)

√
1 + δK
1− δK

)
ϵ1,

(31)

where the inequality follows from (??), (??), (??), (??) and
a derivative fact of Lemma 1 that δK ≤ δK+1. Notice that√
K − t ≤

√
K, 1√

K−t
≤ 1 and

∥xΩ\Ωt∥ ≥
√
K − tmin

i∈Ω
|x∗(i)|, (32)

we can give another sufficient condition:

1− (2 +
√
K)δK+1

1− δK+1
min
i∈Ω

|x∗(i)| ≥ 2δK+1(1− δK+1)

1− δK+1
E

+
1− δK+1 +

√
1 + δK+1(1 + δK+1)

1− δK+1
ϵ1. (33)

With the assumption of (??) that δK < 1
2+

√
K−1

, LHS of
(??) is guaranteed to be positive. Therefore, we finally obtain
a sufficient condition for (??):

min
i∈Ω

|x∗(i)| ≥

2δK+1(1− δK+1)E +
(
1− δK+1 + (1 + δK+1)

3
2

)
ϵ1

1− (2 +
√
K)δK+1

.

(34)

Thus, we complete the proof.

B. Gaussian Noise
Assume that the i.i.d noise in model (??) obeys that ei ∼

N(0, σ2). It has been shown in [?] that

P

(
∥e∥ ≤ σ

√
m+ 2

√
m logm

)
≥ 1− 1

m
. (35)

By using the above conclusion together with Theorem 1, we
obtain the following result.

Theorem 2. Suppose that the i.i.d noise in model (??) obeys
ei ∼ N(0, σ2) and A satisfies the RIP condition that

δK <
1

2 +
√
K − 1

(36)

in model (??). Define the differential vector xe = x∗ − µΩ

and suppose that ∥xe∥ ≤ E. Then CAMP with stopping rule
t = K will exactly recover the support Ω of the sparse signal
x∗ with probability at least 1− 1

m , if the minimum magnitude
of nonzero elements of x∗ satisfies

min
i∈Ω

|x∗(i)| ≥ 2δK+1(1− δK+1)

1− (2 +
√
K)δK+1

E

+
1− δK+1 + (1 + δK+1)

3
2

1− (2 +
√
K)δK+1

σ

√
m+ 2

√
m logm. (37)

V. CONCLUSION

In this letter, we have studied the performance of
Covariance-Assisted Matching Pursuit under the framework
of RIP. A sufficient condition on RIP and sparse signals is
given under l2 bounded noise and Gaussian noise respectively
to guarantee the exact support recovery of CAMP. As shown,
CAMP is able to stay stable under noisy conditions. Though
prior knowledge improves the performance of CAMP, the
uncertainty caused by extra information increases as well.
Thus, a sharp condition is required by CAMP to recover the
sparse signal exactly. The accuracy of the estimation of prior
knowledge influences the performance of CAMP to a great
extent.

REFERENCES

[1] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
2006.

[2] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[3] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transactions on
Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[4] H. Zhang, Y. Zhang, N. M. Nasrabadi, and T. S. Huang, “Joint-
structured-sparsity-based classification for multiple-measurement tran-
sient acoustic signals,” IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), vol. 42, no. 6, pp. 1586–1598, 2012.

[5] J. Fang, Y. Shen, H. Li, and P. Wang, “Pattern-coupled sparse bayesian
learning for recovery of block-sparse signals,” IEEE Transactions on
Signal Processing, vol. 63, no. 2, pp. 360–372, 2014.

[6] A. Adler, “Covariance-assisted matching pursuit,” IEEE Signal Process-
ing Letters, vol. 23, no. 1, pp. 149–153, 2015.

[7] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Transactions on Image
Processing, vol. 15, no. 12, pp. 3736–3745, 2006.

[8] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “Audio inpainting,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 3, pp. 922–932, 2011.

[9] M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching
pursuit using the restricted isometry property,” IEEE Transactions on
Information Theory, vol. 56, no. 9, pp. 4395–4401, 2010.

[10] Q. Mo, “A sharp restricted isometry constant bound of orthogonal
matching pursuit,” arXiv:1501.01708 [cs.IT], 2015.

[11] Y. Shen and S. Li, “Sparse signals recovery from noisy measurements
by orthogonal matching pursuit,” Inverse Problems and Imaging, vol. 9,
no. 1, pp. 231–238, 2015.

[12] J. Lin and S. Li, “Nonuniform support recovery from noisy random
measurements by orthogonal matching pursuit,” J. Approx. Theory,
vol. 165, pp. 20–40, 2013.

[13] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sens-
ing signal reconstruction,” IEEE Transactions on Information Theory,
vol. 55, no. 5, pp. 2230–2249, 2009.

[14] S. Foucart, “Sparse recovery algorithms: Sufficient conditions in terms
of restricted isometry constants,” Neamtu M., Schumaker L. (eds) Ap-
proximation Theory XIII: San Antonio 2010. Springer Proceedings in
Mathematics, vol. 13, pp. 65–77, 2012.

[15] G. Boole, I. Grattan-Guinness, and G. Bornet, Elementary Treatise on
Logic not Mathematical, pp. 40–41. Birkhuser Verlag, Berlin, 1849.

[16] L. Rencker, W. Wang, and M. D. Plumbley, “A greedy algorithm with
learned statistics for sparse signal reconstruction,” in ICASSP, 2017.

[17] R. Wu, W. Huang, and D. R. Chen, “The exact support recovery of
sparse signals with noise via orthogonal matching pursuit,” IEEE Signal
Processing Letters, vol. 20, no. 4, pp. 403–406, 2012.

[18] T. T. Cai and L. Wang, “Sparse signals recovery from noisy mea-
surements by orthogonal matching pursuit,” IEEE Transactions on
Information Theory, vol. 57, no. 7, pp. 4680–4688, 2011.


