DSP 2014 August 22, 2014

Defense Against Sybil Attacks in Directed Social Networks

Pengfei Liu, Xiaohan Wang, Xiangqian Che, Zhaoqun Chen, and Yuantao Gu

Department of Electronic Engineering, Tsinghua University

Outline

- Introduction
- Model
- Proposed method
- Experiment results
- Conclusion

Spamming in microblogging services

- Microblogging services become popular, such as Twitter and Sina Weibo
 - Relations are directed
 - Directed social networks
- Spammers in microblogging services
 - Phishing
 - Advertising on counterfeit products
 - Propagating illegal messages
 - Faking trends
 - Misleading public opinion

- User-profile based
 - e.g. Profile Integrity; Photo; Number of Follower; Number of Following; Follower/Following Ratio
- Microblog based
 - e.g. URL count (or %); @ count (or %); microblog
 frequency; avg. time between microblogs; number of #

- Social relation based
 - Existing work for spammer detection methods in undirected social networks, they use e.g. modularity, random walks
 - We haven't seen any work for directed social network including microblogging services

Outline

- Introduction
- Model
- Proposed method
- Experiment results
- Conclusion

6

- Sybil Attack
 - Comes from a novel, where the heroine "Sybil" has multiple personalities
 - One adversary has multiple false identities (microblog accounts) in the attack

*C. Yang, R. Harkreader, et.al, "Analyzing Spammers Social Networks for Fun and Profit: A Case Study of Cyber Criminal Ecosystem on Twitter," in *WWW*, 2012, pp. 71-80.

14

Attack model: analysis

Attack model: analysis

Attack model: analysis

- Intra-community feature
 - Similar for directed and undirected networks
- Inter-community feature
 - Different
 - The key for the detection of Sybil nodes

Outline

- Introduction
- Model
- Proposed method
- Experiment results
- Conclusion

- Modularity is widely used, but not enough for solving the problem
 - Modularity for directed networks is defined as*,

*E. A. Leicht, and M. E. J. Newman, "Community structure in directed networks," *Physical Review Letters*, vol. 100, no. 11, 2008.

How to evaluate a network partition?

Proposed set of measures for directed networks partition • evaluation

 $Q = \sum_{\substack{i,j \\ \text{node } i,j \text{ in } \\ \text{the same community}}} Q_{ij} - \sum_{\substack{i,j \\ \text{node } i,j \text{ in } \\ \text{different community}}}$ Q_{ij} ,

different communities

 Q_{ii} measures the confidence that node i and j are in the same community

How to evaluate a network partition?

 Proposed set of measures for directed networks partition evaluation

How to evaluate a network partition?

 Proposed set of measures for directed networks partition evaluation

$$Q = \sum_{\substack{i,j \\ \text{node } i,j \text{ in } \\ \text{the same community}}} Q_{ij} - \sum_{\substack{i,j \\ \text{node } i,j \text{ in } \\ \text{different communities}}} Q_{ij},$$

where

 $Q_{ij} = \begin{cases} F_{ij}, & i, j \text{ connected}; \\ G_{ij}, & i, j \text{ not connected}, \end{cases}$

- With arbitrary selection of F_{ij} and G_{ij} , various properties of the network can be measured
- Modularity is a special case of the set of measures

- Take 2-community partition as example
- Select an initial state
- Iteration
 - For each node, calculate the increment of Q when moving the node to the other community
 - Get the max gain for the previous step, and move the corresponding node to the other community
- Stop when the max gain is no larger than 0

• Recall: intra-community feature and inter-community feature

- Intra-community feature
 - Modularity
- Inter-community feature
 - Edge balance ratio*
- Overall

*X. Wang, Z. Chen, P. Liu, and Y. Gu, "Edge balance ratio: Power law from vertices to edges in directed complex network", *IEEE Journal of Selected Topics in Signal Processing*, vol.7, no.2, pp. 184-194, 2013.

- Intra-community feature
 - Modularity
- Inter-community feature
 - Edge balance ratio
- Overall

*X. Wang, Z. Chen, P. Liu, and Y. Gu, "Edge balance ratio: Power law from vertices to edges in directed complex network", *IEEE Journal of Selected Topics in Signal Processing*, vol.7, no.2, pp. 184-194, 2013.

- Intra-community feature
 - Modularity
- Inter-community feature
 - Edge balance ratio
- Overall

Outline

- Introduction
- Model
- Proposed method
- Experiment results*
- Conclusion

*Codes can be found at <u>http://gu.ee.tsinghua.edu.cn/publications#sybil</u>

Experiment setup

Experiment setup

31

Basic results

• $P_{h2s} = 2 \times 10^{-4}, P_{s2h} = 5 \times 10^{-3}$

- false alarm rate: 0.017%±0.014%
- false negative rate: 0

Variation of construction parameters

• Vary P_{h2s}

33

Variation of construction parameters

- Vary P_{h2s}
- $P_{\rm s2h} = 5 \times 10^{-3}, \lambda = 2$ 50,000 attack edges

More compromised edges, more compromised nodes falsely identified as Sybil nodes

Variation of construction parameters

• Vary P_{s2h}

Variation of regulation parameter

• Vary λ

Comparison with SybilDefender

- No existing schemes specialized in the Sybil detection problem in *directed* social networks
- SybilDefender* is one of the most effective Sybil-defending schemes in *undirected* social networks

P _{s2h}	10 ⁻⁵		2x10 ⁻⁵	
Error type	false alarm	false negative	false alarm	false negative
Proposed	0	0	0.002%	0
SybilDefender	2.42%	0	2.70%	8.2%

*W. Wei, X. Fengyuan, C. C. Tan, and Q. Li, "SybilDefender: Defend against sybil attacks in large social networks," in *INFOCOM*, 2012, pp. 1951-1959.

Outline

- Introduction
- Model
- Proposed method
- Experiment results
- Conclusion

Conclusion

- A set of measures for the evaluation of network partitions of directed networks
- A social relation based method for the defense against Sybil attacks in directed social networks
- Promising results and outperforms the reference algorithm
- Future work
 - Adaptation of regularization factor
 - Mixed method that utilize profile-based, tweet-based and graphbased methods for spammer detection

