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Spamming in microblogging services

• Microblogging services become popular, such as 
Twitter and Sina Weibo
– Relations are directed
– Directed social networks

• Spammers in microblogging services
– Phishing
– Advertising on counterfeit products
– Propagating illegal messages
– Faking trends
– Misleading public opinion
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Defense against spammers: methods

• User-profile based
– e.g. Profile Integrity; Photo; Number of Follower; Number 

of Following; Follower/Following Ratio

• Microblog based
– e.g. URL count (or %); @ count (or %); microblog

frequency; avg. time between microblogs; number of #
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• Social relation based
– Existing work for spammer detection methods in 

undirected social networks, they use e.g. modularity, 
random walks

– We haven’t seen any work for directed social network
including microblogging services

Defense against spammers: methods
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Attack model

• Sybil Attack
– Comes from a novel, where the heroine “Sybil” has 

multiple personalities
– One adversary has multiple false identities (microblog

accounts) in the attack
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Attack model

Honest region:
Well-connected

Sybil region:
Well-connected
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Attack model

Honest region:
Well-connected

Sybil region:
Well-connected

Typical directed social network
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Attack model

Honest region:
Well-connected

Sybil region:
Well-connected

In order to improve
their rankings
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Attack model

Attack edge:
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Well-connected
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Attack model

Attack edge:
Many

Honest region:
Well-connected

Sybil region:
Well-connected

Attack edges are arbitrarily selected by attackers
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Attack model

Compromised edge:
Few

Attack edge:
Many

Honest region:
Well-connected

Sybil region:
Well-connected

13



Attack model

Compromised edge:
Few

Attack edge:
Many

Honest region:
Well-connected

Sybil region:
Well-connected

A study of spammers on Twitter* shows that 
compromised Edge/Attack Edge ratio is about 10%.

*C. Yang, R. Harkreader, et.al, “Analyzing Spammers Social Networks for Fun and Profit: A Case Study of 
Cyber Criminal Ecosystem on Twitter,” in WWW, 2012, pp. 71-80.
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Attack model: analysis

Honest region:
Well-connected

Sybil region:
Well-connected

Intra-community feature
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Attack model: analysis

Compromised edge:
Few

Attack edge:
Many
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Attack model: analysis

• Intra-community feature
– Similar for directed and undirected 

networks

• Inter-community feature
– Different
– The key for the detection of Sybil 

nodes

Compromised edge:
Few

Attack edge:
Many

Honest region:
Well-

connected

Sybil region:
Well-

connected

Intra-community feature
Inter-community feature

Undirected network

Directed network
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How to evaluate a network partition?

• Modularity is widely used, but not enough for solving 
the problem
– Modularity for directed networks is defined as*,

out in

,
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d i j i j

i j

d d
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m m

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*E. A. Leicht, and M. E. J. Newman, “Community structure in directed networks,” Physical 
Review Letters, vol. 100, no. 11, 2008.

In-degree of 
node j

Out-degree 
of node i

Total edge 
count

Node i in 
community Ci

Whether there is
an edge from

node i to j
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How to evaluate a network partition?

• Proposed set of measures for directed networks partition 
evaluation

, ,
node , in node , in

the same community different communities

,ij ij
i j i j

i j i j

Q Q Q  

Qij measures the confidence that node i and j are in the same community
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How to evaluate a network partition?

• Proposed set of measures for directed networks partition 
evaluation

, ,
node , in node , in

the same community different communities

,ij ij
i j i j

i j i j

Q Q Q  

Those with high
confidence should 
be in the same 
community

Those with low
confidence should 
be in different 
communities
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How to evaluate a network partition?

• Proposed set of measures for directed networks partition 
evaluation

where

• With arbitrary selection of Fij and Gij, various properties 
of the network can be measured

• Modularity is a special case of the set of measures

, ,
node , in node , in

the same community different communities

,ij ij
i j i j

i j i j

Q Q Q  

, , connected;
, , not connected,
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ij
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Q
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
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
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How to optimize Q ?

• Take 2-community partition as example
• Select an initial state
• Iteration

– For each node, calculate the increment of Q when moving the 
node to the other community

– Get the max gain for the previous step, and move the 
corresponding node to the other community

• Stop when the max gain is no larger than 0
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How to choose measure functions?

• Recall: intra-community feature and inter-community feature
Compromised edge:

Few

Attack edge:
Many

Honest region:
Well-connected

Sybil region:
Well-connected

Intra-community feature

Inter-community feature
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How to choose measure functions?

• Intra-community feature
– Modularity

• Inter-community feature
– Edge balance ratio*

• Overall
– Selecting

– and

out in in

out1 logi j j
ij
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d d d
F

m d
  

out in
i j

ij

d d
G

m
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*X. Wang, Z. Chen, P. Liu, and Y. Gu, “Edge balance ratio: Power law from vertices to edges in directed 
complex network”, IEEE Journal of Selected Topics in Signal Processing, vol.7, no.2, pp. 184-194, 2013.

25



How to choose measure functions?

• Intra-community feature
– Modularity

• Inter-community feature
– Edge balance ratio

• Overall
– Selecting

– and

out in in

out1 logi j j
ij

i

d d d
F

m d
  

out in
i j

ij

d d
G

m
 

In-degree of 
node j

Total edge 
count

Out-degree 
of node i

26



How to choose measure functions?

• Intra-community feature
– Modularity

• Inter-community feature
– Edge balance ratio

• Overall
– Selecting

– and
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*X. Wang, Z. Chen, P. Liu, and Y. Gu, “Edge balance ratio: Power law from vertices to edges in directed 
complex network”, IEEE Journal of Selected Topics in Signal Processing, vol.7, no.2, pp. 184-194, 2013.



How to choose measure functions?

• Intra-community feature
– Modularity

• Inter-community feature
– Edge balance ratio

• Overall
– Selecting

– and
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*Codes can be found at 
http://gu.ee.tsinghua.edu.cn/publications#sybil
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Experiment setup

Honest region
Sybil region

10,000 top users of Sina
Weibo and 699,236 
edges among them

Constructed using ER 
model with 1,000 nodes 

and 10,000 edges
• To get ground truth
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Experiment setup

Honest region
Sybil region

10,000 top users of Sina
Weibo and 699,236 
edges among them

Constructed using ER 
model with 1,000 nodes 

and 10,000 edges
• To get ground truth

s2hP

h2sP
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Basic results

• 4 3
h2s s2h,2 10 5 10P P   

10,000 nodes;
699,236 edges

1,000 nodes;
10,000 edges

2,000 edges

50,000 edges

• false alarm rate:  0.017%±0.014%
• false negative rate: 0

2 
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Variation of construction parameters

• Vary Ph2s

• 3
s2h 5 1 2,0P   

false alarm rate

false negative 
rate
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Variation of construction parameters

• Vary Ph2s

• 3
s2h 5 1 2,0P   

More compromised 
edges, more 
compromised nodes 
falsely identified as 
Sybil nodes

50,000 attack edges

2,000

34



Variation of construction parameters

• Vary Ps2h

• 4
s2h 12 2,0P   

Less attack edges, 
more compromised 
nodes falsely 
identified as Sybil 
nodes

2,000 compromised edges

50,000
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Variation of regulation parameter

• Vary
•

Inter-community 
dominating


4 3

h2s s2h,2 10 5 10P P   

Intra-community 
dominating

should be 
selected in
this region



36



Comparison with SybilDefender

• No existing schemes specialized in the Sybil detection 
problem in directed social networks

• SybilDefender* is one of the most effective Sybil-defending 
schemes in undirected social networks

Ps2h 10-5 2x10-5

Error type false 
alarm

false 
negative 

false 
alarm

false 
negative 

Proposed 0 0 0.002% 0
SybilDefender 2.42% 0 2.70% 8.2%

*W. Wei, X. Fengyuan, C. C. Tan, and Q. Li, “SybilDefender: Defend against sybil attacks in 
large social networks,” in INFOCOM, 2012, pp. 1951-1959.
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Conclusion

• A set of measures for the evaluation of network partitions 
of directed networks

• A social relation based method for the defense against 
Sybil attacks in directed social networks

• Promising results and outperforms the reference
algorithm

• Future work
– Adaptation of regularization factor
– Mixed method that utilize profile-based, tweet-based and graph-

based methods for spammer detection
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