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Abstract

The newly proposed l1 norm constraint zero-point attraction Least Mean Square

algorithm (ZA-LMS) demonstrates excellent performance on exact sparse system iden-

tification. However, ZA-LMS has less advantage against standard LMS when the system

is near sparse. Thus, in this paper, firstly the near sparse system modeling by General-

ized Gaussian Distribution is recommended, where the sparsity is defined accordingly.

Secondly, two modifications to the ZA-LMS algorithm have been made. The l1 norm

penalty is replaced by a partial l1 norm in the cost function, enhancing robustness with-

out increasing the computational complexity. Moreover, the zero-point attraction item

is weighted by the magnitude of estimation error which adjusts the zero-point attraction

force dynamically. By combining the two improvements, Dynamic Windowing ZA-LMS

(DWZA-LMS) algorithm is further proposed, which shows better performance on near

sparse system identification. In addition, the mean square performance of DWZA-LMS

algorithm is analyzed. Finally, computer simulations demonstrate the effectiveness of

the proposed algorithm and verify the result of theoretical analysis.

Keywords: LMS, Sparse system identification, Zero-point attraction, ZA-LMS,

Generalized Gaussian distribution

1 Introduction

A sparse system is defined when impulse response contains only a small fraction of large

coefficients compared to its ambient dimension. Sparse systems widely exist in many appli-

cations, such as Digital TV transmission channel [1] and the echo path [2]. Generally, they

can be further classified into two categories: exact sparse system (ESS) and near sparse

system (NSS). If most coefficients of the impulse response are exactly zero, it is defined as
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an exact sparse system (Fig. 1. a); Instead, if most of the coefficients are close (not equal)

to zero, it is a near sparse system (Fig. 1. b and c). Otherwise, a system is non-sparse if

its most taps have large values (Fig. 1. d). For the simplicity of theoretical analysis, sparse

systems are usually simplified into exact sparse. However, in real applications most systems

are near sparse due to the ineradicable white noise. Therefore, it is necessary to investigate

on near sparse system modeling and identification.

Among many adaptive filtering algorithms for system identification, Least Mean Square

(LMS) algorithm [3], which was proposed by Widrow and Hoff in 60s of the past century,

is the most attractive one for its simplicity, robustness and low computation cost. How-

ever, without utilizing the sparse characteristic, it shows no advantage on sparse system

identification. In the past few decades, some modified LMS algorithms for sparse systems

are proposed. M-Max Normalized LMS (MMax-NLMS) [4] and Sequential Partial Update

LMS (S-LMS) [5] reduces the computational complexity and steady-state misalignment by

partially updating the filter coefficients. Proportionate LMS (PLMS) [2] and its improved

ones such as IPNLMS [6] and IIPNLMS [7] accelerate the convergence rate by updating

each coefficient iteratively with different step size proportional to the magnitude of filter

coefficient. Stochastic Tap-Normalized LMS (ST-NLMS) [8, 9] improves the performance

on specific sparse system identification where large coefficients appear in clusters. It locates

and tracks the non-zero coefficients by adjusting the filter length dynamically. However, its

convergence performance largely depends on the span of clusters. If the span is too long

or the system has multiple clusters, it shows no advantage compared with standard LMS

algorithm.

More recently, inspired by the research of CS reconstruction problem [10, 11], a class

of novel adaptive algorithms for sparse system identification have emerged based on the lp

(0 ≤ p ≤ 1) norm constraint [12–14]. Especially, Zero-point Attraction LMS (ZA-LMS)

algorithm [12] significantly improves the performance on exact sparse system identification

by introducing a l1 norm constraint on the cost function of standard LMS, which exerts

the same zero-point attraction force on all coefficients. However, for near sparse systems

identification, the zero-point attractor can be a double-edged sword. Though it increases

the convergence rate because by the l1 norm constraint, it also produces larger steady-state

misalignment as it forces all coefficients to exact zero. Thus, it possesses less advantage

against standard LMS algorithm when the system is near sparse. In this paper, firstly Gen-

eralized Gaussian Distribution (GGD) [15] is introduced to model the near sparse system.

Then two improvements on the ZA-LMS algorithm is proposed. Above all, by adding a

window on the l1 norm constraint, the steady-state misalignment is reduced without in-

creasing the computational complexity. Furthermore, the zero-point attractor is weighted

to adjust the zero-point attraction by utilizing the estimation error. By combining the

two improvements, the Dynamic Windowing ZA-LMS (DWZA-LMS) algorithm is proposed

which shows improved performance on the near sparse system identification.

The rest of the paper is organized as follows: In Section II, ZA-LMS algorithm based on
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Figure 1: Sparse and non-sparse systems. (a) is a exact sparse system, (b) and (c) are

near sparse system generated by Generalized Gaussian Distribution with β = 0.05 and 0.1

respectively. (d) is a non-sparse system generated by Gaussian distribution.

l1 norm constraint is reviewed, and the near sparse system is modeled. The new algorithm

is proposed in Section III. In Section IV, the mean square convergence performance of

DWZA-LMS is analyzed. The performances of the new algorithm and other improved LMS

algorithms for sparse system identification are compared by simulation in Section V, where

the effectiveness of our analysis is verified as well. Finally, Section VI concludes the paper.

2 Preliminary

2.1 Review of ZA-LMS algorithm

Let d(n) be a sample of the desired output signal

d(n) = hTx(n) + v(n), (1)

where h = [h0, h1, · · · , hL−1]
T is the unknown system with memory length L, x(n) =

[x(n), x(n − 1), · · · , x(n − L + 1)]T denotes the input vector, and v(n) is the observation

noise assumed to be independent of x(n). The estimation error e(n) between desired and

output signal is defined as

e(n) = d(n)−wT(n)x(n). (2)

where w(n) are the filter coefficients and w(n) = [w0(n), w1(n), · · · , wL−1(n)]
T. Thus the

cost function of ZA-LMS is

ξZA(n) =
1

2
|e(n)|2 + η∥w(n)∥1, (3)
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where ∥w(n)∥1 denotes the l1 norm of the filter coefficients. Parameter η is the factor

balancing the new penalty and the estimation error. By minimizing (3), the ZA-LMS

algorithm updates its coefficients by

w(n+ 1) = w(n) + µe(n)x(n)− ρsgn [w(n)] , (4)

where µ is the step size, ρ = ηµ is the zero-point attraction controller, and sgn[·] is the

component-wise sign function.

By observing (4), the recursion of filter coefficients for sparse system can be summarized

as

wnew = wprev + µfGC(w) + ρfZA(w), (5)

where fGC(w) = e(n)x denotes the gradient correction function, and fZA(w) = −sgn(w)

stands for zero-point attractor which is caused by the l1 norm penalty. For each iteration,

the zero-point attractor forces the filter taps to decrease a little when it is positive, or

otherwise to increase a little when it is negative.

2.2 Near Sparse System Modeling

Exact sparse system is appropriate for theoretical analysis, however, most physical sys-

tems are near sparse with widely existing white noise in real life, thus their modeling is of

more significant importance. Generalized Gaussian Distribution (GGD) is one of the most

prominent and widely used sparse distributions. For example, in multimedia communica-

tions such as image and speech coding, GGD is usually found to best fit the coefficients of

the discrete sine and cosine transforms, the Walsh-Hadamard transform, and the wavelet

transform [16]. In ultra wide bandwidth (UWB) systems, it has recently been found to

fit the multiuser interference better [17]. These findings lead to applications of GGD in

video coding, speech recognition, blind signal separation and UWB receiver design [18–20].

Therefore GGD is utilized to model the near sparse system in this study. It is a class of

symmetry distribution with the Gaussian and Laplacian distribution as the special cases,

with delta and uniformity distribution as limit. The probability density function of GGD

is

f(x) =
β

2λΓ(1/β)
exp

[
−(|x− µ|/λ)β

]
, (6)

where λ = σg

√
Γ(1/β)
Γ(3/β) , Γ(x) denotes the Gamma function, µ and σ2

g are called the mean and

variance of GGD, respectively. Besides, β determines the decay rate of the density function

and can be used to denote the sparsity of the system (see as Fig. 1. b, c; please notice that

the system sparsity decreases as β increases). Especially, GGD is Gaussian Distribution

when β = 2, and it turns into Laplacian Distribution when β = 1. By integrating f(x), the
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Figure 2: Comparison between ZA-LMS and LMS on Exact Sparse System and Near Sparse

System.

distribution function is

F (x) =
1

2
+ sgn(x− µ)

Θ

[
1/β,

(
|x−µ|

λ

)β
]

2Γ(1/β)
. (7)

where Θ(s, x) =
∫ x
0 ts−1e−tdt is called the lower incomplete function.

3 Improved ZA-LMS Algorithm

The ZA-LMS algorithm improves the performance by exerting an l1 norm penalty forcing

small coefficients to zero iteratively. It is very effective for the exact sparse system iden-

tification. However, for the near sparse system with small white noise on all coefficients,

most of the small coefficients are forced to zero. Thus ZA-LMS usually degrades with large

steady-state misalignment, showing no improvement compared with standard LMS. The

situation is more clearly illustrated in Fig. 2, where the exact sparse sparse system is gen-

erated with 8 nonzero large coefficients with tap length of 100, and the near sparse system

is the same with the former except that a power of 1 × 10−4 white noise is added on all

coefficients. The step sizes for all algorithms are set as µ = 0.01. The optimal parameter ρ

is derived theoretically from (36) of [21] by minimizing the steady-state MSD.

From Fig. 2, it can be seen that by choosing the theoretically optimal parameter ρ the

performance of ZA-LMS is much better than standard LMS for exact sparse system. How-

ever, the performance of ZA-LMS severely degrades on near sparse system identification.

As stated above, the main reason is that the strong zero-point attraction forces near zero

coefficients to zero that results in the large steady-state misalignment. Though empirically
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Figure 3: The zero-point attractor for sparse system, (a)ZA-LMS, (b)WZA-LMS.

decreasing ρ may alleviate this problem, in that case, ZA-LMS will degrade to standard

LMS showing no improvement, as shown in Fig. 2. Thus to improve the performance of

near sparse system identification, a new ZA-LMS based algorithm is put forward, the main

modifications are as follows.

3.1 Windowing ZA-LMS

As the attracting range of ZA-LMS algorithm reaches infinity, all coefficients of the sparse

system are attracted to zero point. However, the identical attraction on both large and small

ones will lead to increase the computational complexity and steady-state misalignment.

Thus, the first improvement lies in the constraint of zero-point attracting range. As shown

in Fig. 3, the new zero-point attraction, which attracts the coefficients only in a certain

range, is proposed by adding a window on the original zero-point attracting. The new

recursion of coefficients of the proposed Windowing ZA-LMS (WZA-LMS) is

w(n+ 1) = w(n) + µe(n)x(n)− ρsgnw [w(n)] , (8)

where sgnw[·] is the component-wise partial sign function, defined as

sgnw[t] = −fWZA(t) =

{
sgn(t) a < |t| ≤ b;

0 elsewhere.
(9)

where a and b are both positive constant which denotes the lower and upper threshold of

the attraction range, respectively.

From Fig. 3, it can be concluded that ZA-LMS is the special case of WZA-LMS when a

reaches 0 and b approaches infinity, respectively. Besides, by investigating (4), (8) and (9),

it can be seen that the computational complexity of the two algorithms is approximately

the same. And by adopting the new zero-point attractor and properly setting the threshold,

the coefficients, whether too small or too large, will not be attracted any more. Thus, the

steady-state misalignment is significant reduced especially for near sparse system.
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3.2 Dynamic ZA-LMS

As mentioned above, the sparse constraint should be relaxed in order to reduce the steady-

state misalignment when the updating procedure reaches the steady-state. Inspired by

the idea of variable step size methods of standard LMS algorithm [23], the magnitude of

estimation error, which denotes the depth of convergence, is introduced here to adjust the

force of zero-point attraction dynamically. That is,

fDZA(t) = fWZA(t)|e(n)|. (10)

At the beginning of iterations, large estimation error increases zero-point attraction force

which also accelerates the convergence. When the algorithm is approaching the steady-state,

the error decreases to a minor value accordingly. Thus the influence of zero-point attraction

force on small coefficients is reduced that produce smaller steady-state misalignment. By

implementation of this improvement on ZA-LMS algorithm, the algorithm is named as

Dynamic ZA-LMS (DZA-LMS).

3.3 Dynamic Windowing ZA-LMS

Finally, by combining the two improvements, the final DynamicWindowing ZA-LMS (DWZA-

LMS) algorithm can be drew. The new recursion of filter coefficients is as follows,

wi(n+ 1) = wi(n) + µe(n)x(n− i)− ρ|e(n)|sgnw[wi(n)] ∀0 ≤ i < L. (11)

In addition, the new method can also improve the performance of ZA-NLMS, which is

known for its robustness. The recursion of DWZA-NLMS is

wi(n+ 1) = wi(n) +
1

ϵ+ xT(n)x(n)
{µe(n)x(n− i)− ρ |e(n)| sgnw [wi(n)]} ∀0 ≤ i < L.

(12)

where ϵ > 0 is the regularization parameter.

4 Analysis of the proposed Algorithm

The mean square convergence analysis of DWZA-LMS algorithm is carried out in this

section. The analysis is based on the following assumptions.

1. The input signal x(n) is i.i.d zero-mean Gaussian. The observation noise v(n) is

zero-mean white. The tap-input vectors x(n) and the desired response d(n) follow

the common independence assumption [22], which are generally used for performance

analysis of LMS algorithm.

2. The unknown near sparse filter tap follows GGD. As stated in Section II, this assump-

tion is made because GGD is the suitable sparse distribution for near sparse system

modeling.
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3. The steady state adaptive filter tap wi(n) follows the same distribution with hi (1 ≤
i ≤ L). This is a reasonable assumption in that the error between the coefficients

of the identified and the unknown real systems are very small when the algorithm

converges.

Under these assumptions, the mean square convergence condition and the steady-state

MSE of DWZA-LMS algorithm are derived. Also, the choice of parameters is discussed in

the end of this section.

First of all, the misalignment vector is defined as

∆(n) = w(n)− h, (13)

and auto-covariance matrix of ∆(n) as

K(n) = E
{
∆(n)∆T(n)

}
. (14)

4.1 Mean Square Convergence of Misalignment

Combining (1), (2), (11) and (13), one derives

∆(n+ 1) = A(n)∆(n) + µv(n)x(n)− ρm(n), (15)

where A(n) = I− µx(n)xT(n), m(n) = [m0(n),m1(n), · · · ,mL−1(n)], and

mi(n) = |e(n)|sgnw[wi(n)] ∀0 ≤ i < L. (16)

By utilizing the independence assumption [3], and substituting (15) into (14) yields

K(n+ 1) = E{A(n)∆(n)∆T(n)AT(n)}+ µ2σ2
vσ

2
xIL

−ρE{m(n)∆T(n)AT(n)}+ ρ2E{m(n)mT(n)}

−ρE{A(n)∆(n)mT(n)}, (17)

where IL is an L×L unit matrix, σ2
x and σ2

v denote the power of input signal and observation

noise, respectively. By utilizing the property that the fourth-order moment of a Gaussian

variable is three times the variance square, one obtains

E{A(n)∆(n)∆T(n)AT(n)} = (1− 2µσ2
x + 2µ2σ4

x)K(n) + µ2σ4
xD(n)IL, (18)

where D(n) = tr [K(n)]. With (13), one has

E{A(n)∆(n)mT(n)} =
{
E{m(n)∆T(n)AT(n)}

}T
= (1− µσ2

x)E{∆(n)mT(n)}. (19)

Combining (17), (18) and (19), one derives

K(n+ 1) = (1− 2µσ2
x + 2µ2σ4

x)K(n) + µ2σ4
xD(n)IL

+µ2σ2
vσ

2
xIL − ρ(1− µσ2

x)
{
E{∆(n)mT(n)}

}T

−ρ(1− µσ2
x)E{∆(n)mT(n)}+ ρ2E{m(n)mT(n)}. (20)
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By taking trace on both sides of (20), it can be concluded that the adaptive filter is stable

if and only if

0 < 1− 2µσ2
x + (L+ 2)µ2σ4

x < 1, (21)

which is simplified to

0 < µ <
2

(L+ 2)σ2
x

. (22)

This implies that the proposed DWZA-LMS algorithm has the same stability condition

for the mean square convergence as the ZA-LMS and standard LMS algorithm [3].

4.2 Steady-state Mean Square Error

In this subsection, the steady-state Mean Square Error (MSE) of DWZA-LMS algorithm is

analyzed. By definition, MSE is

MSE = E{e2(∞)} = σ2
v + tr{R(∞)K(∞)}, (23)

where R(∞) = σ2
xIL, then (23) can be rewritten as

MSE = σ2
v + σ2

xD(∞). (24)

Thus, our work is to estimate D(∞). In (20), let n approach infinity, by observing the ith

(0 ≤ i < L) element Ki(∞) of the matrix K(∞), one obtains

Ki(∞) = (1− 2µσ2
x + 2µ2σ4

x)Ki(∞) + µ2σ4
xD(∞)

+µ2σ2
vσ

2
x − 2ρ(1− µσ2

x)E{∆imi(∞)}

+ρ2E{m2
i (∞)} ∀0 ≤ i < L, (25)

With reference to (16), it is obvious that

E{m2
i (∞)} =

{
MSE a < |wi(∞)| ≤ b;

0 elsewhere.
(26)

To derive E{∆i(∞)mi(∞)}, by multiplying mT(n) on the right of each item of (15) and

taking the expectation value on both sides as well as letting n approach infinity it yields

E{∆(∞)mT(∞)} = − ρ

µσ2
x

E{m(∞)mT(∞)}. (27)

Thus, when |wi(∞)| ≤ a or |wi(∞)| > b (0 ≤ i < L), it has

Ki(∞) =
µσ2

xD(∞)

2(1− µσ2
x)

+
µ2σ2

xσ
2
v

2µσ2
x(1− µσ2

x)
, (28)

when a < |wi(∞)| ≤ b (0 ≤ i < L), it has

Ki(∞) =
1

2µσ2
x(1− µσ2

x)

[
µ2σ4

xD(∞) + µ2σ2
vσ

2
x +

(
2

µσ2
x

− 1

)
ρ2MSE

]
. (29)
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According to Assumption (3), and combining (7), we have

PA = P {a ≤ |wi(n)| ≤ b}

= 2 [F (b)− F (a)]

=

{
Θ

[
1/β, (

|b|
λ
)β
]
−Θ

[
1/β, (

|a|
λ
)β
]}

/Γ(1/β), (30)

where PA denotes the probability that the coefficients of adaptive filter will be attracted.

On the other hand, the probability that they will not be attracted is PNA = 1 − PA. By

combining (28) and (29) and summing up all the diagonal items of matrix K(n), it yields

D(∞) =

L

[
µ2σ2

vσ
2
x + ρ2PA

(
2

µσ2
x

− 1

)
MSE

]
µσ2

x [2− µσ2
x(L+ 2)]

, (31)

Combining (24) and (31) , finally one has

MSE =
µσ2

v

[
2− µσ2

x(L+ 2)
]
+ Lµ2σ2

xσ
2
v

2µ− µ2σ2
x(L+ 2)− ρ2PAL

(
2

µσ2
x

− 1

) . (32)

If ρ = 0, equation (32) is the same with MSE of standard LMS algorithm [3],

MSELMS =

(
2− 2µσ2

x

)
σ2
v

2− µσ2
x(L+ 2)

. (33)

4.3 Parameter Analysis

The performance of the proposed algorithm is largely affected by the balancing parameter

ρ and the thresholds a and b.

According to (3) and (4), it can be seen that the parameter ρ determines the importance

of the l1 norm and the intensity of zero-point attraction. In a certain range, a larger ρ,

which indicates stronger attraction intensity, will improve the convergence performance by

forcing small coefficients toward zero with fewer iterations. However, according to (32), a

larger ρ also results in a larger steady-state misalignment. So the parameter ρ can bal-

ance the tradeoff between adaptation speed and quality. Moreover, the optimal parameter

ρ empirically satisfies ρ ≪ µ ≪ 1. By analyzing steady-state MSE in (32) under such

circumstance, it can be seen that∣∣∣∣ρ2PAL

(
2

µσ2
x

− 1

)∣∣∣∣ ≪ ∣∣2µ− µ2σ2
x(L+ 2)

∣∣ . (34)

According to (34), the influence of the last term in the denominator of (32) can be ignored,

which means that the steady-state MSE of the proposed algorithm is approximately the

same with standard LMS for near sparse systems identification. The same conclusion can

also be drawn from (11) intuitively: when the adaptation reaches steady-state, the small

e(n) renders the value of ρ|e(n)| trivial compared to µ, letting the relaxation of zero-point
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attraction constraint. On the other hand, with large e(n) in the beginning and the process

of adaptation which indicates larger zero-point attraction force, the zero-point attractor

adjusts the small taps more effectively than ZA-LMS, forcing them to zero with fewer

iterations, which accelerate the convergence rate significantly.

The thresholds a and b determine the zero-point attraction range together. The param-

eter a is set to avoid forcing all small coefficients to exact zero, it is suggested to be set as

the mean amplitude of those near zero coefficients of the real system. Specifically, for exact

sparse systems, as most coefficients of the unknown system are exactly zero except some

large ones, accordingly a = 0 is set to force most small coefficients to exact zero. For exact

sparse systems contaminated by small Gaussian white noise, a should be set as the standard

deviation of the noise. For near sparse systems generated by GGD, as the mean amplitude

of the small coefficient is hard to derive, we empirically choose a for the proposed algorithm.

As a small sparsity indicator β in GGD usually means smaller mean amplitude of the small

coefficient, we choose smaller a when β is smaller. According to the simulations, a is chosen

in the range 1× 10−3 to 1× 10−2 for GGD with β varying from 0.05 to 0.5. The parameter

b is chosen to reduce the unnecessary attraction of large coefficients in ZA-LMS, therefore,

empirically any constant b, which is much larger than the deviation of small coefficients

and much smaller than infinity, should be appropriate. Various simulations demonstrate

that the parameter b can be set as a constant around 1 for most near sparse systems. This

choice of b is quite standard for most applications.

5 Simulations

In this section, first we demonstrate the convergence performance of our proposed algorithm

on two near sparse systems and a exact sparse system in Experiment 1-4, respectively.

Second, Experiment 5-7 are designed to verify the derivation and discussion in Section IV.

Besides the proposed algorithm, Standard NLMS, ZA-LMS, IPNLMS [6] and IIPNLMS [7]

are also simulated for comparison. To be noticed, the normalized variants of ZA-LMS and

the proposed algorithm are adopted to guarantee a fair comparison in all experiments except

the fourth, where DWZA-LMS is simulated to verify the theoretical analysis result.

The first experiment is to test the convergence and tracking performance of the proposed

algorithm on near sparse system driven by Gaussian white signal and correlated input,

respectively. The unknown system is generated by GGD which has been shown in Fig. 1. b

with filter length L = 100, it is initialized randomly with β = 0.05 and σ2
g = 1. For the

white and correlated input, the system is regenerated following the same distribution after

1700 and 4500 iterations, respectively. For the white input, the signal x(n) is generated by

white Gaussian noise with power σ2
x = 1. For the correlated input, the signal is generated

by white Gaussian noise y(n) driving a first-order Auto-Regressive (AR) filter, x(n) =

0.8x(n − 1) + y(n), and x(n) is normalized. Besides, the power of observation noise is

σ2
v = 1×10−4 for both input. The five algorithms are simulated 100 times respectively with
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Table 1: Comparison of computational complexity of IPNLMS, IIPNLMS and DWZA-

NLMS

Algorithms
Multiplies

Comparisons
Convolution Tap update Total

IPNLMS L 3L 4L 0

IIPNLMS L 3L 4L 4L

ZA-NLMS L 2L 3L 0

DWZA-NLMS L (1 + P1)L (2 + P1)L 2L

Where P1 ∈ [0, 1] denotes the fraction of coefficients in the attracting range of DWZA-

NLMS.

parameter µ = 1 in both cases. The other parameters are as follows

• IPNLMS and IIPNLMS with white input: αP = −0.5, ρ = 0.4, αP1 = −0.5, αP2 = 0.5,

Γ = 0.1;

• IPNLMS and IIPNLMS with correlated input: αP = −0.5, ρ = 0.2, αP1 = −0.5,

αP2 = 0.5, Γ = 0.1;

• ZA-NLMS and DWZA-NLMS with white input: ρZA = 3× 10−4, ρDWZA = 6× 10−2,

a = 1× 10−3, b = 0.8.

• ZA-NLMS and DWZA-NLMS with correlated input: ρZA = 3 × 10−4, ρDWZA =

3× 10−2, a = 1× 10−3, b = 0.8.

All the parameters are particularly selected to keep their steady-state error in the same

level. The MSD of these algorithms for both white and correlated input are shown in

Fig. 4(a) and Fig. 4(b), respectively. The simulation results show that all algorithms con-

verge more slowly in the color input driven scenario than in the white noise driven case.

However, the ranks or their relative performances are similar and the proposed algorithm

reaches the steady state first with both white and correlated input. On the other hand,

the performance of ZA-NLMS degenerate to standard NLMS as the system is near sparse.

Furthermore, the computational complexity of the proposed algorithm is also smaller com-

pared with improved PNLMS algorithms (Table 1). Besides, when the system is changed

abruptly, the proposed algorithm also reaches the steady-state first in both cases.

The second experiment is to demonstrate the proposed algorithm on near-sparse systems

other than GGD. The near-sparse system with 100 taps is generated in the following manner.

First, 8 large coefficients following Gaussian distribution N (0, 1) are generated, where all
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(b) Correlated Input

Figure 4: Comparisons of convergence rate and tracking ability of five different algorithms

for sparse system identification driven by (a) white input and (b) correlated input, respec-

tively.

their tap positions follow Uniform distribution. Second, white Gaussian noise with variance

σ2
h = 1× 10−4 is added to all taps, enforcing the system to be near-sparse. The signal x(n)

is generated by white Gaussian noise with power σ2
x = 1. Five algorithms, the same as in

Experiment 1, are simulated 100 times respectively with parameter µ = 1. The parameters

are set to the same values as in the white input case of Experiment 1 except a = 1× 10−2

for the proposed algorithm. From Fig. 5, we can conclude that the proposed algorithm
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Figure 5: Comparisons of convergence rate on NLMS, ZA-NLMS, IPNLMS, IIPNLMS, and

the proposed algorithm on near sparse system.

reaches the steady-state first in such near sparse system.

The third experiment demonstrates the effectiveness of the proposed modification on

ZA-LMS algorithm on near sparse system. The system and the signal are generated in the

same way as in Experiment 2. The proposed DZA-NLMS, DWZA-NLMS are compared

with ZA-NLMS for the system with 100 simulations. The step length for all algorithms are

set as µ = 1. We particularly choose parameters ρDZA = 0.05 and ρZA = 6.5 × 10−4 for

DZA-NLMS and ZA-NLMS to ensure their steady-state mean square error in the same level.

We set ρDWZA = 0.05 for DWZA-NLMS algorithm for a fair comparison with DZA-NLMS.

The parameter a and b in DWZA-NLMS are chosen as a = 0.01 and b = 0.8, respectively.

From Fig. 6, we can see that with the dynamic zero-point attractor DZA-NLMS con-

vergences faster than ZA-NLMS. By adding another window constraint on the zero-point

attractor, The DWZA-NLMS not only preserves the property of fast convergence of DZA-

NLMS, but also shows smaller steady-state mean square error than both ZA-NLMS and

DZA-NLMS.

The fourth experiment shows that the proposed improvement is still effective on the

exact sparse system identification. The unknown system is shown in Fig. 1. a, where

filter length L = 100. Besides, 8 large coefficients is uniformly distributed and generated

by Gaussian distribution N (0, 1), and all other tap coefficients are exactly zero. The input

signal is generated by white Gaussian noise with power σ2
x = 1, and the power of observation

noise is σ2
v = 1× 10−4. The proposed algorithm is compared with ZA-NLMS and standard

NLMS, where each algorithm is simulated 100 times with 2000 iterations. The step size µ

is set to 0.65 for NLMS, and µ = 1 for both the ZA-NLMS and the proposed algortihms.
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Figure 6: Comparisons of convergence speed on ZA-NLMS, DZA-NLMS and DWZA-NLMS.
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Figure 7: Comparisons of convergence rate on NLMS, ZA-NLMS, and the proposed algo-

rithm on exact sparse system.

The parameter ρZA is set to 6×10−4 and ρDWZA = 6×10−2. All the parameters are chosen

to make sure that the steady-state error is the same for comparison. According to Fig. 7, it

can be seen that the convergence performance is also improved compared with ZA-NLMS

via the proposed method on exact sparse system, thus the proposed improvement on the

algorithms are robust.

The fifth experiment is to test the sensitivity to sparsity of the proposed algorithm.

All conditions are the same with the first experiment except the sparsity. The parameter
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Figure 8: Comparisons of convergence rate of proposed algorithm for different sparsity.

β is selected as 0.05, 0.1, and 0.15, respectively. Besides, we also compared our algorithm

when the system is non-sparse which is generated by Gaussian distribution. For each β,

both the proposed algorithm and NLMS are simulated 50 times with 1700 iterations. The

step size µ is 1 for both algorithms, and ρ = 4 × 10−2, a = 1 × 10−2, b = 0.8 for the

proposed algorithm. The simulated MSD curves are shown in Fig. 8. The steady-state

MSD remains approximately the same for the proposed algorithm with varying parameter

β which denotes the sparsity of systems, meanwhile the convergence rate decreases as the

sparsity decreases. For the non-sparse case, our algorithm degenerates and shows similar

behavior with standard NLMS. However, for each β the proposed algorithm is never slower

than standard NLMS. It should be noticed that NLMS is independent on the system sparsity

and behaves similar when β varies.

The sixth experiment is to test the steady-state MSE with different parameters. The

coefficients of unknown system follows GGD with filter length L = 100, the sparsity and

variance are chosen as σ2
g = 1 and β = 0.1, respectively. The input is generated by white

Gaussian noise with normalized power σ2
x = 1, and the power of observation noise is 1×10−4.

Under such circumstance, the steady-state MSD is tested. Here a = 1×10−2 and b = 0.8 are

set for each simulation. The step size µ is varied from 0 to 1.1×10−3 for given ρ = 2×10−4.

And ρ is changed from 0 to 1× 10−3 for given µ = 1× 10−2. Fig. 9 and Fig. 10 show that

the analytical results accord with the simulated ones of different parameters for variable

values. Specifically, in Fig. 9, the steady-state MSE goes up as the step size increases,

whose trend is the same with standard LMS. Fig. 10 shows that the analytical steady-state

MSE matches with simulated one as the parameter ρ gets larger, which verifies the result

in Section V.
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Figure 9: The steady-state MSD of the proposed algorithm with different step size
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Figure 10: The steady-state MSD of the proposed algorithm algorithm with different pa-

rameters ρ

The seventh experiment is designed to test the behavior of the proposed algorithm with

respect to different parameters of a and b. All conditions of the proposed algorithm are the

same with the second experiment except the parameters a and b. First, we set b = 0.8 and

vary a as a = 0, 1 × 10−3, 1 × 10−2, and 1 × 10−1. Second , we set a = 1 × 10−2 and vary

b as b = 0.1, 0.5, 1, and 5. From Fig. 11(a), we can see that the optimal a is chosen as the

variance of the small coefficients. Smaller a will result in larger misalignment, and larger

a will cause slow convergence. From Fig. 11(b), we conclude that b = 1 shows the best
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Figure 11: The effect of parameters a and b on the proposed algorithm for near sparse

system.

performance. Either too large or too small b will result in slower convergence.

6 Conclusion

In order to improve the performance of ZA-LMS for near sparse system identification, an

improved algorithm, DWZA-LMS algorithm, is proposed in this paper by adding a window

to the zero-point attractor in ZA-LMS algorithm and utilizing the magnitude of estimation

error to weight the zero-point attractor. Such improvement can adjust the zero-point attrac-

tion force dynamically to accelerate the convergence rate with no computational complexity

increased. In addition, the mean square convergence condition, steady-state MSE and pa-

rameter selection of the proposed algorithm are theoretically analyzed. Finally, computer

simulations demonstrate the improvement of the proposed algorithm and effectiveness of

the analysis.
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