AVERAGING RANDOM PROJECTION: A FAST ONLINE SOLUTION FOR LARGE-SCALE CONSTRAINED STOCHASTIC OPTIMIZATION

Jialin Liu¹, Yuantao Gu², and Mengdi Wang³

¹Department of Automation, ²Department of Electronic Engineering, Tsinghua University, Beijing, China
³Department of Operations Research and Financial Engineering, Princeton University, NJ, USA

Email: danny19921123@126.com, gyt@tsinghua.edu.cn, mengdiw@princeton.edu

Overview

- **Stochastic Optimization (SO) problem:** Finding an optimal solution for a stochastic convex function with intersected convex sets:
 \[
 \arg\min_x \{ F(x) = E[f(x; \xi)] \}
 \]
 s.t. \(x \in X = \bigcap_{i=1}^m X_i \)
 where \(F(x) \) is convex and \(X_i \) are convex sets.

- **Incremental Constraint Projection Method (ICPM):**
 - Choose an arbitrary initial point \(x_0 \in \mathbb{R}^n \).
 - Repeat as \(k = 0, 1, 2, ... \):
 1) Sample a random (sub)gradient \(\nabla f(x; \xi_k) \);
 2) Sample \(\alpha_i \) from the sets of constraints \(X_1, X_2, ..., X_m \);
 3) Compute next iterate \(x_{k+1} \):
 \[
 x_{k+1} = \Pi_{\alpha_k} \left[x_k - \alpha_k \nabla f(x; \xi_k) \right]
 \]

Algorithm Description

- **Incremental Constraint Averaging Projection Method (ICAPM):**
 - Choose an arbitrary initial point \(x_0 \in \mathbb{R}^n \).
 - Repeat as \(k = 0, 1, 2, ... \):
 1) Sample a random (sub)gradient \(\nabla f(x; \xi_k) \);
 2) Sample \(M_k \) constraints \(\{ \alpha_{i_k} \}_{i_k} \) from the sets of constraints \(X_1, X_2, ..., X_m \);
 3) Compute next iterate \(x_{k+1} \):
 \[
 x_{k+1} = x_k - \alpha_k \nabla f(x; \xi_k)
 \]
 \[
 x_{k+1} = \frac{1}{M_k} \sum_{i_k} \Pi_{\alpha_{i_k}} Y_{i_k}
 \]

Motivation

- Non-controlled Randomness in ICPM:
 - Increasing variance as \(k \) increases.
 - Non-guaranteed convergence rate.
 - More real scenes require sampling multiple constraints:
 - Decentralized computing.
 - Online computing.

Convergence Analysis

- **Theorem 1 (Convergence of ICPM):** Under proper conditions [1], iterates generated by ICPM converge almost surely to a random optimal point.
- **Theorem 2 (Convergence Rate with Controlled Probability):** Assume the objective function is strongly convex, there exist constants \(C_i, C_j > 0 \):
 \[
 \Pr \left[\| x_k - x^* \| \leq \frac{C_i}{k+1}, \forall 0 \leq k \leq T \right] \geq \prod_{i=1}^{T} \left(1 - \frac{C_i}{M_k} \right)
 \]
 where \(x^* \) is the optimal point.

Simulation Results

- **Decentralized Network Problem:** A optimization problem is computed on \(m \) decentralized agents:
 \[
 \arg\min_{x_1, x_2, ..., x_m} \left\{ \sum_{i=1}^{m} f_i(x_i) \right\}, \text{s.t.} \ x_i = x_1 = ... = x_m,
 \]
 where \(f_i \) is the local objective function on the \(i \)-th agent (unknown to others), and \(x_i \) is the local variable.
- Use ICAPM to solve this problem, (sub)gradient descent should be computed locally, and communicate their local variable randomly (i.e. random projection). Its performance is largely depended on sample number \(M_k \), as the left figure.
- **Online Linear SVM:**
 \[
 \arg\min_{x, b} \left\{ \| \phi(x) \|_2^2 \right\}, \text{s.t.} \phi(x) \cdot x + b \geq 1, \forall i = 1, 2, ..., m,
 \]
 where \(x_i, y_i \) are data sampled or generated online.

Conclusion

- ICAPM is almost surely convergent under proper conditions (at most the same as ICPM).
- The convergence rate of ICAPM could be controlled by parameters (sample number) every step. Proper parameters could guarantee convergence rate as \(O(1/k) \) with high probability.

References