& Stochastic Optimization (SO) problem: )

Finding an optimal solution for a stochastic convex
function with intersected convex sets:

argmin{F(x) = E[f(x W]}

st.xe X=[, X

where "'Ow is convex and W are convex sets.
* Incremental Constraint Projection Method (ICPM):
» Choose an arbitrary initial point X, € R" .
* Repeatas k=0,1,2,...

1) Sample a random (sub)gradient Vf(x ;V.);
2) Sample @, from the sets of constraints X, X, ..., X, ;
3) Compute next iterate X, ., :
X = Ha)k[xk -,V f(xk; Vk)]
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* Non-controlled Randomness in ICPM:
* Increasing variance as k increases.
* Non-guaranteed convergence rate.
 More real scenes require sampling multiple constraints:
* Decentralized computing.
* Online computing.
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Overview

Incremental Constraint Averaging Projection Method
(ICAPM):;

« Choose an arbitrary initial point x, € R".
 Repeatas k=0,12,...
1) Sample a random (sub)gradient V f (x ;v );
2) Sample M, constraints {a)k,i}M
o Xm s

Compute next iterate X, ., :
Yiur = %~ V(X V)
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Simulation Results
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* Decentralized Network Problem: A optimization

problem is computed on & decentralized agents:

st x=xX=..=X,

m
arg min <
oo |42

where f. Is the local objective function on the I-th agent
(unknown to others), and X is the local variable.

* Use ICAPM to solve this problem, (sub)gradient
descent should be computed locally, and
communicate their local variable randomly (i.e.
random projection) . Its performance is largely
depended on sample number M, as the left figure.

e Online Linear SVM:
argmin{|| |}, st.y,(¢'%+b)=1Vi=12..m

®,b
where x,y. are data sampled or generated online.
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Convergence Analysis Conclusion

s

* Theorem 1 (Convergence of ICAPM): Under proper
conditions [1], iterates generated by ICAPM converge
almost surely to a random optimal point.

* Theorem 2 (Convergence Rate with Controlled

.

Probability): Assume the objective function Is strongly
convex, there exist constants C,C, > 0:
S V0 < k<

: T [ C, A
Pr — X |IF< T[> 1
(ka | 11 j lk:! v,

\
where X is the optimal point.
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* |CAPM is almost surely convergent under proper conditions (at
most the same as ICPM).

* The convergence rate of ICAPM could be controlled by
parameters (sample number) every step. Proper parameters

could guarantee convergence rate as O(1/k) with high
probabillity.
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