
Local Measurement and Reconstruction for Noisy
Bandlimited Graph Signals

Xiaohan Wang, Jiaxuan Chen, Yuantao Gu∗

aDepartment of Electronic Engineering and Tsinghua National Laboratory for Information
Science and Technology (TNList), Tsinghua University, Beijing 100084, P. R. China.

Abstract

Signals and information related to networks can be modeled and processed as

graph signals. It has been shown that if a graph signal is smooth enough to

satisfy certain conditions, it can be uniquely determined by its decimation on

a subset of vertices. However, instead of the decimation, sometimes local com-

binations of signals on different sets of vertices are obtained in potential ap-

plications such as sensor networks with clustering structures. In this work, a

generalized sampling scheme is proposed based on local measurement, which

is a linear combination of signals associated with local vertices. It is proved

that bandlimited graph signals can be perfectly reconstructed from the local

measurements through a proposed iterative local measurement reconstruction

(ILMR) algorithm. Some theoretical results related to ILMR including its con-

vergence and denoising performance are given. Then the optimal partition of

local sets and local weights are studied to minimize the error bound. It is shown

that in noisy scenarios the proposed local measurement scheme is more robust

than the traditional decimation scheme.
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1. Introduction

In recent years, graph-based signal processing has become an active research

field due to the increasing demands for signal and information processing in

irregular domains [2, 3]. For an N -vertex undirected graph G(V, E), where V

denotes the vertex set and E denotes the edge set, if a real number is associated5

with each vertex of G, these numbers on all the vertices constitute a graph

signal f ∈ RN . Potential applications of graph signal processing have been

found in areas including sensor networks [4], semi-supervised learning [5], image

processing [6], and structure monitoring [7].

A lot of concepts and techniques for classical signal processing are extended10

to graph signal processing. Related problems on graphs include graph signal

filtering [8], graph wavelets [9, 10], graph signal compression [11, 12], uncertainty

principle [13], graph signal coarsening [14, 15], phase transition [16], parametric

dictionary learning [17, 18], graph topology learning [19], graph signal sampling

and reconstruction [20, 21, 22, 23, 24, 25, 26, 27], and distributed algorithms15

[28, 29].

1.1. Motivation and Related Works

It is a natural problem to reconstruct smooth signals from partial observa-

tions on a graph in practical applications [8, 30]. In a scenario of environment

monitoring by wireless sensor networks (WSNs), sometimes only parts of the20

nodes transmit data due to limited bandwidth or energy. By exploiting the

smoothness of data, the missing entries can be estimated from the received ones,

which can be modeled as the reconstruction of smooth signals on the graph from

decimation. Especially, a sensor network with the hierarchical architecture is

partitioned into multiple clusters. In each cluster, there is a node acting as25

the head and gathering data from all sensors inside the cluster. Different from

regular sensors, cluster heads are equipped with long-distance-communication

terminals, which send data to the center directly or in an ad-hoc manner. The
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collected data within a cluster are aggregated by the cluster head, which plays

the role as a local measurement and can be naturally obtained. Each local30

measurement is a linear combination of the signals associated with a cluster of

sensors. The cluster heads upload the linear combinations of data in the clusters

and the center may recover the original data of all sensors in the WSN. Retriev-

ing the raw data of all the nodes using the measured data from all the clusters

can be modeled as a problem of smooth graph signal reconstruction from local35

measurements. This problem is studied in this work for the first time.

There have been several works focusing on the theory of the exact reconstruc-

tion of a bandlimited graph signal from its decimation. Sufficient conditions for

unique reconstruction of bandlimited graph signals from decimation are given

for normalized [31] and unnormalized Laplacian [32]. In [20], a necessary and40

sufficient condition on the cutoff frequency is established and the bandwidth is

estimated based on the concept of spectral moments. Several algorithms are

proposed to reconstruct graph signals from decimation. In [21], an algorithm

named iterative least square reconstruction (ILSR) is proposed and the trade-

off between data-fitting and smoothness is also considered. Two more efficient45

algorithms named iterative weighting reconstruction (IWR) and iterative prop-

agating reconstruction (IPR) are proposed in [23] with much faster convergence.

The idea of local measurements can be traced back to time-domain nonuni-

form sampling [33], or irregular sampling [34, 35], which has a close relationship

with graph signal sampling and reconstruction. For the signals in time-domain50

[36, 34], shift-invariant space [37], or on manifolds [38, 39], based on the theo-

retical results of signal reconstruction from samples, there have been extended

works on reconstructing signals from local averages. Time-domain local aver-

ages are taken from small intervals around the samples with proper averaging

functions. Theoretical results show that bandlimited original signals can be ac-55

curately recovered if the cutoff frequency is smaller than a quantity which is

inversely proportional to the length of intervals [36]. However, there are few

such works on graph-signal-related problems. As far as we know, the only work

related to local aggregation for graph signals is applying the graph-shift operator
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sequentially [40], which is different from our problem.60

Part of this work has been presented in [1]. This paper is the full version

including all mathematical analysis and extensive discussions.

1.2. Contributions

In this paper, we first generalize the graph signal sampling scheme from

decimation to local measurement. Based on this scheme, we then propose a65

new algorithm named iterative local measurement reconstruction (ILMR) to

reconstruct the original signal from limited measurements. It is proved that

if certain conditions are satisfied the bandlimited signal can always be exactly

reconstructed from its local measurements. Moreover, we demonstrate that the

traditional decimation scheme, which samples by vertex, along with its corre-70

sponding reconstruction algorithm is a special case of this work. Based on the

performance analysis of ILMR, we find that the local measurement scheme is

more robust than decimation in noisy scenarios. As a consequence, the optimal

local weights in different noisy environments are discussed. The proposed sam-

pling scheme has several advantages. First, it will benefit in the situation where75

local measurements are easier to obtain than the samples of specific vertices.

Second, the proposed local measurement scheme is more robust against noise.

This paper is organized as follows. In section 2, the basis of graph signal

processing and some existing algorithms for reconstructing graph signals from

decimation are reviewed. The generalized sampling scheme, i.e. local measure-80

ment, is proposed in section 3. In section 4, the reconstruction algorithm ILMR

is proposed and its convergence is proved. In section 5, the reconstruction per-

formance in noisy scenarios is studied, and the optimal choice of local weight

and local set partition is discussed. Experimental results are demonstrated in

section 6, and the paper is concluded in section 7.85
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2. Preliminaries

2.1. Laplacian-based Graph Signal Processing and Bandlimited Graph Signals

Laplacian-based graph signal processing is considered in this work. The

Laplacian [41] of an N -vertex undirected graph G is defined as

L = D−A,

where A is the adjacency matrix of G, and D is the degree matrix, which is a

diagonal matrix whose entries are the degrees of the corresponding vertices.

Since G is undirected, its Laplacian is a symmetric and positive semi-definite90

matrix, and all of the eigenvalues of L are real and nonnegative. If G is

connected, there is only one zero eigenvalue. Denote the eigenvalues of L as

0 = λ1 < λ2 ≤ · · · ≤ λN , and the corresponding eigenvectors as {uk}1≤k≤N .

The eigenvectors can also be regarded as graph signals on G.

The Laplacian L : RN → RN is an operator on the space of graph signals

on G,

(Lf)(u) =
∑

v∈V,u∼v

(f(u)− f(v)) , ∀u ∈ V ,

where f(u) denotes the entry of f associated with vertex u, and u ∼ v denotes95

that there is an edge between vertices u and v. The Laplacian can be viewed as

a kind of differential operator between vertices and their neighbors. Therefore,

among the eigenvectors of L, those associated with small eigenvalues have sim-

ilar values on connected vertices, while the eigenvectors associated with large

eigenvalues vary fast on the graph. In other words, eigenvectors associated with100

small eigenvalues are smooth and denote low-frequency signals on G.

For graph Fourier transform [10], the eigenvectors {uk}1≤k≤N are regarded

as the Fourier basis of the frequency-domain, and the eigenvalues {λk}1≤k≤N

are regarded as frequencies. The graph Fourier transform is

f̂(k) = ⟨f ,uk⟩ =
N∑
i=1

f(i)uk(i),

where f̂(k) is the strength corresponding to the frequency λk.
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Similar to its counterpart in time-domain, if a graph signal f is smooth on

G, f can be uniquely determined by its entries on a limited number of sampled

vertices. Based on the graph Laplacian, the smoothness of a graph signal is

usually described as being within a bandlimited subspace. A graph signal f ∈

RN is ω-bandlimited if

f ∈ PWω(G) ≜ span{ui|λi ≤ ω}

The ω-bandlimited subspace PWω(G) is called Paley-Wiener space on G [31].

Another way to describe the smoothness of low-frequency subspace is by the

number of eigenvalues within it. However, according to the formulation of the105

Laplacian operator, the magnitudes of eigenvalues reflect the smoothness of

graph signals better than the rank of the eigenvalues does. Therefore we prefer

using the cutoff frequency ω to describe the low-frequency subspaces. Different

graph topologies may lead to various dimensions of the Paley-Wiener spaces.

2.2. Reconstruction from Decimation of Bandlimited Graph Signals110

There have been theoretical analysis and algorithms on the reconstruction

from decimation of bandlimited graph signals. Existing results show that f ∈

PWω(G) can be uniquely reconstructed from its entries {f(u)}u∈S on a sampling

vertex set S ⊆ V under certain conditions. Typical reconstruction algorithms

include ILSR [21] and IPR [23]. The latter one is based on an important concept115

of local sets and converges faster.

Definition 1 (local sets [23]). For a sampling set S on a graph G(V, E), as-

sume that disjoint local sets {N (u)}u∈S associated with the sampled vertices is

a partition of V. For each u ∈ S, denote the subgraph of G restricted to N (u) by

GN (u), which is composed of vertices in N (u) and edges between them in E. For120

each u ∈ S, its local set satisfies u ∈ N (u), and the subgraph GN (u) is connected.

The property of a local set is measured by maximal multiple number and

radius, as follows.
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Definition 2 (maximal multiple number [23]). Denoting T (u) as the shortest-

path tree of GN (u) rooted at u, for v ∼ u in T (u), Tu(v) is the subtree composed

by v and its descendants in T (u). The maximal multiple number of N (u) is

K(u) = max
v∼u in T (u)

|Tu(v)|.

Definition 3 (radius [23]). The radius of N (u) is the maximal distance of

vertex in GN (u) from u, denoted as

R(u) = max
v∈N (u)

dist(v, u),

where the distance is the number of edges in the shortest path connecting the

two vertices.125

Theorem 1 (IPR [23]). For a given sampling set S and associated local sets

{N (u)}u∈S on a graph G(V, E), ∀f ∈ PWω(G), if ω is less than 1/Q2
max, f can

be reconstructed by its decimation {f(u)}u∈S through the IPR method

f (0) = Pω

(∑
u∈S

f(u)δN (u)

)
,

f (k+1) = f (k) + Pω

(∑
u∈S

(f(u)− f (k)(u))δN (u)

)
,

where

Qmax = max
u∈S

√
K(u)R(u),

Pω(·) is the projection operator onto PWω(G), and δN (u) denotes the graph

signal with entries

δN (u)(v) =

1, v ∈ N (u);

0, v /∈ N (u).

3. Local Measurement: A Generalized Sampling Scheme

We consider a new sampling scheme of measuring by local sets. In this

scheme, all the vertices in a graph are partitioned into disjoint clusters. In

each cluster, there is no specific sampling vertex, but all vertices in this cluster
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contribute to produce a measurement. For this purpose, centerless local sets are130

firstly introduced based on Definition 1.

Definition 4 (centerless local sets). For a graph G(V, E), assume that dis-

joint local sets {Ni}i∈I is a partition of V, where I denotes the index set of

divisions. Each subgraph GNi , which denotes the subgraph of G restricted to Ni,

is connected.135

One should notice that the centerless local sets play important roles in the

proposed generalized sampling scheme, while the local sets do not in the tradi-

tional decimation scheme. In the decimation scheme, the local sets are designed

for specific reconstruction algorithms and have no effect in the sampling process.

However, in the generalized sampling scheme, the centerless local sets are elabo-140

rated for sampling and determine the performance of reconstruction, which will

be discussed in section 5.

To evaluate the partition of a graph, the diameter of a centerless local set is

defined and will be utilized in the next section.

Definition 5 (diameter). For a centerless local set Ni, its diameter is defined

as the largest distance of two vertices in GNi , i.e.,

Di = max
u,v∈Ni

dist(u, v).

In order to produce a measurement from specific centerless local set, a local145

weight is defined to balance the contribution of all vertices in this set and to

obstruct the energy from other parts of the graph.

Definition 6 (local weight). A local weight φi ∈ RN associated with a cen-

terless local set Ni satisfies

φi(v)

≥ 0, v ∈ Ni

= 0, v /∈ Ni

and ∑
v∈Ni

φi(v) = 1.
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Figure 1: An illustration of the traditional sampling (decimation) scheme versus the general-

ized sampling (local measurement) scheme. For each centerless local set, a local measurement

is produced by a linear combination of signals associated with vertices within this set.

Finally, we arrive at the definition of local measurement by linearly combin-

ing the signals in each centerless local set using preassigned local weights.

Definition 7 (local measurement). For given centerless local sets and the

associated local weights {(Ni,φi)}i∈I , a set of local measurements for a graph

signal f is {fφi}i∈I , where

fφi ≜ ⟨f ,φi⟩ =
∑
v∈Ni

f(v)φi(v).

The sampling schemes of decimation and of local measurement are visualized150

in Fig. 1. Compared with decimation in previous works [23, 31], local measure-

ment can be regarded as a generalized sampling scheme. The local measurement

scheme is to obtain linear combinations of the signals in each local set, while the

decimation scheme is to obtain the signals on selected vertices in the sampling

set S. Both sampling schemes take the inner products of the original signal155

and specified local weights. Decimation can be regarded as a special case of

local measurement, in which only the sampled vertices have weight 1 and other

vertices in centerless local sets have weights 0.
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We highlight that the sets, weights and measurements are local rather than

global, which comes from some natural observations. It is partially because lo-160

cality and local operations are basic features of graphs and complex networks.

Moreover, signal processing on graphs may be dependent on distributed imple-

mentation, where local operations are more feasible than global ones.

4. ILMR: Reconstruct Signal from Local Measurements

We will show that under certain conditions the original signal f can be165

uniquely and exactly reconstructed from the local measurements {fφi}i∈I .

First of all, an operator is defined based on centerless local sets and the

associated local weights.

Definition 8. For given centerless local sets and the associated weights {(Ni,φi)}i∈I

on a graph G(V, E), an operator G is defined by

Gf = Pω

(∑
i∈I

⟨f ,φi⟩δNi

)
(1)

=
∑
i∈I

⟨f ,φi⟩Pω(δNi), (2)

where δNi is defined as

δNi
(v) =

1, v ∈ Ni;

0, v /∈ Ni.

(3)

For a graph signal, the proposed operator is to calculate the local measure-170

ment in each centerless local set, then to assign the local measurement to all the

vertices in that set, and finally to filter out the component beyond the band-

width, i.e., (1). Equivalently, it denotes a linear combination of all low-frequency

parts of {δNi}i∈I , with the combination coefficients as the local measurements

of corresponding local sets, i.e., (2).175

The following lemma shows that the proposed operator is bounded in PWω(G)

under certain conditions.
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Lemma 1. For given centerless local sets and the associated weights {(Ni,φi)}i∈I ,

∀f ∈ PWω(G), the following inequality holds,

∥f −Gf∥ ≤ Cmax

√
ω∥f∥,

where

Cmax = max
i∈I

√
|Ni|Di,

| · | denotes cardinality, and Di is defined in Definition 5.

The proof of Lemma 1 is postponed to Appendix 8.1. Lemma 1 shows that

the operator (I−G) is a contraction mapping in PWω(G) if ω is less than180

1/C2
max.

Based on Lemma 1, it is shown in Proposition 1 that the original signal can

be reconstructed from its local measurements.

Proposition 1. For given centerless local sets and the associated weights {(Ni,φi)}i∈I ,

∀f ∈ PWω(G), where ω is less than 1/C2
max, f can be reconstructed from its local

measurements {fφi}i∈I through an iterative local measurement reconstruction

(ILMR) algorithm in Table 1, with the error at the kth iteration satisfying

∥f (k) − f∥ ≤ γk∥f (0) − f∥,

where

γ = Cmax

√
ω. (6)

Proof: According to the definition of G, the iteration (5) can be rewritten185

as

f (k+1) = f (k) +G(f − f (k)). (7)

Note that f ∈ PWω(G) and f (k) ∈ PWω(G) for any k, then f (k) − f ∈ PWω(G).

As a consequence of Lemma 1,

∥f (k+1) − f∥ = ∥(f (k) − f)−G(f (k) − f)∥ ≤ γ∥f (k) − f∥.

□
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Table 1: Iterative Local Measurement Reconstruction.

Input: Graph G, cutoff frequency ω, centerless local sets {Ni}i∈I ,

local weights {φi}i∈I , local measurements {fφi}i∈I ;

Output: Interpolated signal f (k);

Initialization:

f (0) = Pω

(∑
i∈I

fφi
δNi

)
; (4)

Loop:

f (k+1) = f (k) + Pω

(∑
i∈I

(fφi − ⟨f (k),φi⟩)δNi

)
; (5)

Until: The stop condition is satisfied.

Proposition 1 shows that a signal f is uniquely determined and can be recon-

structed by its local measurements {fφi}i∈I if {φi}i∈I are known. The quantity

(fφi − ⟨f (k),φi⟩) is the estimate error between the original measurement and190

the reconstructed measurement at the kth iteration. According to (7), in each

iteration of ILMR, the new increment of the interpolated signal is obtained by

first assigning the estimate errors to all vertices in the associated centerless local

sets, and then projecting it onto the ω-bandlimited subspace.

Considering (18) and (19) in the proof of Lemma 1, one has

∥f −Gf∥2 ≤
∑
i∈I

(∑
v∈Ni

|f(v)− ⟨f ,φi⟩|2
)
.

The RHS of the above inequality shows that the choice of φi for each centerless

local set is independent. Therefore we may look into
∑

v∈Ni
|f(v)−⟨f ,φi⟩|2 for

any fixed i. Denoting φ∗
i as the optimal weights, one may readily arrive at

⟨f ,φ∗
i ⟩ = argmin

x

∑
v∈Ni

|f(v)− x|2 =
1

|Ni|
∑
v∈Ni

f(v).

As a consequence, the uniform weights φ∗
i (v) = 1/|Ni|, ∀i minimize the RHS195

of the above inequality, which leads to the sharpest bound and may accelerate
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convergence.

Except for the difference of decimation and local measurement, the basic

idea of ILMR is similar to that of IPR [23], which is an algorithm of recon-

structing graph signals from decimation. The procedures of IPR and ILMR in200

each iteration are illustrated in Fig. 2. In the assignment or propagating step,

ILMR assigns the estimate errors of local measurements to vertices within the

local sets, while IPR propagates the estimate errors of the decimated signal on

the sampled vertices to other vertices in the local sets. In fact, ILMR degen-

erates to IPR if the local weight concentrates on only one vertex (the sampled205

vertex) in each local set, in which case the local measurement degenerates to

decimation.

The sufficient conditions and error bounds for ILMR and IPR are also differ-

ent. Suppose the (centerless) local sets divisions in ILMR and IPR are exactly

the same, i.e. the sampling set S in IPR can be written as {ui}i∈I , where I210

is the index set in ILMR, then Ni equals N (ui) for all i ∈ I. According to

Definition 2 and 3, we have R(ui) ≤ Di and K(ui) ≤ |N (ui)| = |Ni|. Therefore,

Cmax is not less than Qmax. It implies that a more strict condition is needed for

ILMR. It is reasonable because the sufficient condition for ILMR to guarantee

the reconstruction is for all of the choices of local weights, which include deci-215

mation as a special case. However, since both sufficient conditions in Theorem

1 and Proposition 1 are not tight and there is still room for refinement, such a

comparison only provides a rough analysis.

Remark 1. The projection operator Pω(·) can be approximated by a polynomial

expansion of the Laplacian, which is localized. As a consequence, ILMR can be

approximately implemented in a localized way. In detail, the projection operator

is written as

Pω(f) = Udiag
{
ĥ(λ1), · · · , ĥ(λN )

}
UTf ,
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Figure 2: The procedures of IPR and ILMR. The former algorithm is to reconstruct a bandlim-

ited signal from decimation, while the latter reconstructs a signal from local measurements.

Essentially, ILMR becomes IPR if the local weights concentrate on only one vertex of each

local set, in which case local measurement degenerates to decimation.

where ĥ(·) denotes the lowpass filter

ĥ(λ) =

1, λ ≤ ω;

0, elsewhere.

Utilizing a polynomial approximation of ĥ(·) (e.g. Chebyshev polynomial expan-

sion [10,21]), one has

ĥ(λ) ≈
k∑

j=0

αjλ
j , 0 ≤ λ ≤ λN ,

where {αj} denote the coefficients and k is the order of the approximation,

which is usually far smaller than N . Therefore the projection is approximated
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by a polynomial expansion of the Laplacian

Pω(f) ≈ Udiag


k∑

j=0

αjλ
j
1, · · · ,

k∑
j=0

αjλ
j
N

UTf =

k∑
j=0

αjL
jf .

Because the Laplacian operator can be conducted by each vertex and its neigh-

bors, the projection operator is approximately localized.220

Remark 2. For potential applications, if the local measurements come from

the result of some repeatable physical operations, the local weights are even not

necessarily known when conducting ILMR. In detail, if {φi}i∈I is unknown but

fixed, i.e., the local measurement operation in Fig. 2(b) is a black box, ⟨f (k),φi⟩

can also be obtained by conducting the physical operations in each iteration.225

Therefore, the original signal can still be reconstructed by ILMR without exactly

knowing {φi}i∈I . This is a rather interesting result, and may facilitate graph

signal reconstruction in specific scenarios.

Remark 3. If the bandlimited space is described as a subspace with a known

dimensionality, rather than the cutoff frequency ω, the perfect reconstruction is230

achievable as a closed form by solving linear equations. However, the value of

the iterative algorithm relies on its locality, which is important in graph related

problems. Furthermore, iterative algorithms can be applied in potential online

and distributed scenarios.

5. Performance Analysis235

In this section, we study the error performance of ILMR when the original

signal is corrupted by additive noise. We first derive the reconstruction error for

incorrect measurement. Then the expected reconstruction error is calculated

under the assumption of independent Gaussian noises and the optimal local

weight is obtained in the sense of minimizing the expected reconstruction error240

bound. Finally, in a special case of i.i.d. Gaussian perturbation, a greedy

method for the centerless local sets partition and the selection of optimal local

weights are provided.
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5.1. Reconstruction Error in the Noisy Scenario

Suppose that the observed signal associated with each vertex is corrupted by245

additive noise. The corrupted signal is denoted as f̃ = f + n, where n denotes

the noise. In the kth iteration of ILMR, the corrupted local measurements

{⟨f̃ ,φi⟩}i∈I are utilized to produce the temporary reconstruction of f̃ (k).

The following lemma gives a reconstruction error bound of f̃ (k).

Proposition 2. For given centerless local sets and the associated weights {(Ni,φi)}i∈I ,

f ∈ PWω(G) is corrupted by additive noise n. If ω is less than 1/C2
max, in

the kth iteration the output of ILMR using the corrupted local measurements

{⟨f̃ ,φi⟩}i∈I satisfies

∥f̃ (k) − f∥ ≤ ñ

1− γ
+ γk+1 (∥f∥+ ∥n∥) , (8)

where γ is defined as (6), ñ is defined as250

ñ =
∑
i∈I

√
|Ni| · |ni|, (9)

and ni is the equivalent noise of centerless local set Ni, defined as

ni = ⟨n,φi⟩ =
∑
v∈Ni

n(v)φi(v). (10)

The proof of Proposition 2 is postponed to Appendix 8.2.

From (8) it can be seen that in the noisy scenario the reconstruction error

is controlled by the sum of two parts. The first one is a weighted sum of the

equivalent noises of all the local sets, while the second one is decaying with255

the increase of iteration number. The first part is crucial as the iteration goes

on. Thus minimizing the first part, which is determined by both partition of

centerless local sets and local weights, improves the performance of ILMR in

the noisy scenario.
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5.2. Gaussian Noise and Optimal Local Weights260

For a given partition {Ni}i∈I , some prior knowledge of unknown noise n

brings the possibility to design optimal local weights 1. We assume the noises

associated with different vertices are independent.

Suppose the noise follows zero-mean Gaussian distribution, i.e., n ∼ N (0,Σ),

whereΣ is a diagonal matrix and the noise of vertex v satisfies n(v) ∼ N (0, σ2(v)).265

Then ñ defined in (9) is a random variable.

For centerless local set Ni, according to (10), the equivalent noise ni also

follows a Gaussian distribution ni ∼ N (0, σ2
i ), where

σ2
i =

∑
v∈Ni

σ2(v)φ2
i (v). (11)

Then |ni| follows the half-normal distribution with its expectation satisfying

E {|ni|} = σi

√
2

π
.

According to (9), the expectation of ñ is

E{ñ} =

√
2

π

∑
i∈I

√
|Ni|σi. (12)

Then the following corollary is ready to obtain.270

Corollary 1. For given centerless local sets and the associated weights {(Ni,φi)}i∈I ,

the original signal f ∈ PWω(G), assuming the noise associated with vertex v fol-

lows independent Gaussian distribution N (0, σ2(v)), if ω is less than 1/C2
max,

the expected reconstruction error of ILMR in the kth iteration satisfies

E
{
∥f̃ (k) − f∥

}
≤ 1

1− γ

√
2

π

∑
i∈I

√
|Ni|σi +O

(
γk+1

)
, (13)

where γ is defined as (6), and σi is defined as (11).275

1In fact, the optimal local weights can also be studied in other criterions, e.g. the fastest

convergence. Here we consider the optimal local weights in the sense of minimizing the

expected reconstruction error bound.
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Corollary 1 is ready to be proved by plugging (11) and (12) in the expectation

of (8).

By minimizing the right hand side of (13), the optimal choice of local weights

can be derived.

Corollary 2. For given division of centerless local sets {Ni}i∈I , if the noises280

associated with the vertices are independent and follow zero-mean Gaussian dis-

tributions n(v) ∼ N (0, σ2(v)), then the optimal local weights {φi}i∈I are

φi(v) =


(σ2(v))−1∑

v∈Ni
(σ2(v))−1

, v ∈ Ni;

0, v /∈ Ni.

(14)

Proof: Minimizing the right hand side of (13) is equivalent to minimizing σi

for each local set Ni. By the Cauchy-Schwarz inequality, one has(∑
v∈Ni

(σ2(v))−1

)
σ2
i =

(∑
v∈Ni

(σ2(v))−1

)(∑
v∈Ni

σ2(v)φ2
i (v)

)

≥

(∑
v∈Ni

φi(v)

)2

= 1.

Therefore,

σ2
i ≥ 1∑

v∈Ni
(σ2(v))−1

. (15)

The equality of (15) holds if and only if (14) is satisfied. □
The above analysis shows that in the sense of minimizing the expected re-285

construction error, the optimal local weight associated with vertex v within Ni

is inversely proportional to the noise variance of v. This is evident because

more information are reserved in the sampling process if a larger local weight is

assigned to a vertex with smaller noise variance. However, it should be noted

that compared with the optimal local measurement, assigning all the weights290

in Ni to the vertex with the smallest noise variance, i.e. the optimal decima-

tion, is not the best choice. In fact, the optimal choice of local measurements

is consistent with the well-known inverse variance weighting in statistics [42].

Therefore, local measurement reduces the disturbance of noise and recon-

struct the original signal more precisely. In other words, for given partition295
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of centerless local sets, graph signal reconstruction from local measurements

with the optimal weights performs better than reconstruction from decimation,

even when the vertices with the smallest noise variance are chosen in the latter

sampling scheme.

5.3. A Special Case of Independent and Identical Distributed Gaussian Noise300

Specifically, if noise variances are the same for all the vertices, i.e., σ(v)

equals σ for any v ∈ V , ñ can be approximately written in a more explicit

form. For Ni, the optimal local weight is equal for all the vertices in Ni. Thus

φi(v) equals 1/|Ni| for v ∈ Ni, and in this case,
√
|Ni|ni follows a Gaussian

distribution, √
|Ni|ni ∼ N (0, σ2).

Then
√

|Ni| · |ni| follows the half-normal distribution with the same parameter

σ. The above analysis shows that each term of the sum in (9) follows indepen-

dent and identical half-normal distribution, with its expectation and variance

satisfying

E
{√

|Ni| · |ni|
}
= σ

√
2

π
,

Var
{√

|Ni| · |ni|
}
= σ2

(
1− 2

π

)
.

Assuming that the number of local sets |I| is large, by the central limit theorem,

ñ follows a Gaussian distribution approximately,

ñ ∼ N

(
|I|σ

√
2

π
, |I|σ2

(
1− 2

π

))
.

Then we have the following corollary.

Corollary 3. For given centerless local sets {Ni}i∈I and the associated weights

φi(v) = 1/|Ni| for v ∈ Ni, the original signal f ∈ PWω(G), assuming the noise

associated with each vertex follows i.i.d Gaussian distribution N (0, σ2), if ω is

less than 1/C2
max, the expected reconstruction error of ILMR in the kth iteration

satisfies

E
{
∥f̃ (k) − f∥

}
≤ |I|σ

1− γ

√
2

π
+O

(
γk+1

)
, (16)
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where γ is defined as (6).

According to (16), the error bound is affected by the number of centerless

local sets |I|. A division with fewer sets may reduce the expected reconstruction

error. However, it should be noted that the number of centerless local sets

cannot be too small to satisfy the condition

γ = Cmax

√
ω = max

i∈I

√
|Ni|Diω < 1,

which is determined by the cutoff frequency of the original graph signal. Besides,

the factor 1/(1−γ) in (16) implies that a smaller Cmax, which leads to a smaller

γ, also reduces the error bound. A rough calculation can be given to balance

the two factors. If there are not too many vertices in each Ni, we have that

Cmax approximates to Nmax, where Nmax is the largest cardinality of centerless

local sets. Since Nmax|I| approximates to N , we have

1

1− γ
|I| ≈ 1

1−
√
ωNmax

· N

Nmax
.

To minimize the above quantity, a near optimal Nmax is

Nmax =
1

2
√
ω
, (17)

i.e., γ approximates to 1/2. It provides a strategy to partition centerless local

sets. For given cutoff frequency ω, an approximated Nmax can be chosen ac-305

cording to (17), then the graph is divided into local sets to make sure that |Ni|

is not more than Nmax and the number of local sets is as small as possible.

For a given Nmax, a greedy algorithm is proposed to make the division of

centerless local sets, as shown in Table 2. The greedy algorithm is to iteratively

remove connected vertices with the smallest degrees from the original graph310

into the new set, until the cardinality of the new set reaches Nmax or there is

no connected vertex. The reason for choosing the smallest-degree vertex is that

such a vertex is more likely to be on the border of a graph.
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Table 2: A greedy method to partition centerless local sets with maximal cardinality.

Input: Graph G(V, E), Maximal cardinality Nmax;

Output: Centerless local sets {Ni}i∈I ;

Initialization: i = 0;

Loop Until: V = ∅

1) Find one vertex with the smallest degree in G,

u ∈ argmin
v∈V

dG(v);

2) i = i+ 1, Ni = {u};

3) Obtain the neighbor set of Ni,

Si = {v ∈ G|v ∼ w,w ∈ Ni, v /∈ Ni};

Loop Until: |Ni| = Nmax or Si = ∅

4) Find one vertex with the smallest degree in Si,

u ∈ arg min
v∈Si

dG(v);

5) Ni = Ni ∪ {u};

6) Update Si = {v ∈ G|v ∼ w,w ∈ Ni, v /∈ Ni};

End Loop

7) Remove the edges, E = E\{(p, q)|p ∈ Ni, q ∈ V};

8) Remove the vertices, V = V\Ni and G = G(V, E);

End Loop

6. Experiments

We choose the Minnesota road graph [43], which has 2640 vertices and 6604315

edges, to verify the proposed generalized sampling scheme and reconstruction

algorithm. The bandlimited signals for reconstruction are generated by remov-

ing the high-frequency component of random signals, whose entries are drawn
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from i.i.d. Gaussian distribution. The centerless local sets are generated by the

greedy method in Table 2 using given Nmax. Five kinds of local weights are320

tested including

1. uniform weight, where φi(v) equals 1/|Ni|,∀v ∈ Ni;

2. random weight, where

φi(v) =
φ′
i(v)∑

u∈Ni
φ′
i(u)

, ∀v ∈ Ni, φ
′
i(u) ∼ U(0, 1),

and U(0, 1) denotes the uniform distribution;

3. Dirac delta weight, where φi equals δu for a randomly chosen u ∈ Ni;

4. the optimal weight, where

φi(v) =
(σ2(v))−1∑

v∈Ni
(σ2(v))−1

, ∀v ∈ Ni;

5. the optimal Dirac delta weight, where φi equals δu for

u = arg min
u∈Ni

σ2(u).

Notice that case 3 and case 5 degenerate ILMR to IPR.325

6.1. Convergence of ILMR

In the first experiment, the convergence of the proposed ILMR is verified for

various centerless local sets partition and local weights. The graph is divided

into 709 and 358 centerless local sets for Nmax equals 4 and 8, respectively.

Three kinds of local weights are tested including case 1, 2, and 3. The averaged330

convergence curves are plotted in Fig. 3 for 100 randomly generated original

graph signals. According to Fig. 3, the convergence is accelerated when the

graph is divided into more local sets and has a smaller Nmax. It is intuitive

because more local sets will bring more measurements and increase the sam-

pling rate, which provides more information in the reconstruction. According335

to (6), for the same ω, a smaller Nmax leads to a smaller γ, and guarantees a

faster convergence. The experimental result also shows that in the noise-free

scenario, reconstruction with uniform weight converges slightly faster than that
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Figure 3: The convergence behavior of ILMR for various division of centerless local sets and

different local weights.

with random weight. However, both above cases converge much faster than re-

construction with Dirac delta weight. This means that local-measurement-based340

ILMR behaves better than decimation-based IPR by combining the signals on

different vertices properly.

6.2. Theoretical and Numerical Bounds for Cutoff Frequency

The sufficient condition for ILMR in Proposition 1 is not sharp enough. The

numerical bounds for cutoff frequency is shown in this experiment. The graph is345

divided into 358 centerless local sets for Nmax equals 8, with Cmax =
√
56. 1000

random signals are generated in the subspace with each fixed cutoff frequency.

The criterion for convergence is that the error gets below the threshold 10−3 in

20 iterations. The sufficient condition provided in Proposition 1 is ω < 0.018.

As illustrated in Fig. 4, the actual cutoff frequency is larger than the theoretical350

one. Besides, compared with IPR, the algorithm based on local measurement

reconstructs signals with a larger cutoff frequency.
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Figure 4: The reconstruction rate of ILMR for different cutoff frequencies.

6.3. Optimal Local Weights for Gaussian Noise

In this experiment, independent zero-mean Gaussian noise is added to each

vertex with different variance. The original signal is normalized with unit norm.355

All of the vertices are randomly divided into three groups with the standard

deviations of the noise chosen as σ equals 1 × 10−4, 2 × 10−4, and 5 × 10−4,

respectively. The graph is partitioned into 358 centerless local sets with Nmax

equals 8. Three kinds of local weights are tested including case 1, 4, and 5. The

averaged convergence curves are illustrated in Fig. 5 for 100 randomly generated360

original graph signals. The steady-state relative error with the optimal weight

is smaller than those with uniform weight and the optimal Dirac delta weight.

The experimental result verifies the analysis in section 5.2. It implies that a

better selection of local weights can reduce the reconstruction error if the noise

variances on vertices are different.365

6.4. Performance against Independent and Identical Distributed Gaussian Noise

In this experiment, the performance of the proposed algorithm against i.i.d.

Gaussian noise are tested for three kinds of local weights including case 1, 2,
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Figure 5: The convergence curves of reconstruction with uniform weights, the optimal weights,

and optimal Dirac delta weights when independent zero-mean Gaussian noise is added to each

vertex.

and 3. In this case the optimal local weights is equivalent to uniform weights.

The graph is partitioned into 358 centerless local sets with Nmax equals 8. The370

relative reconstruction errors of three tests are illustrated in Fig. 6. Each

point is the average of 100 trials. The experimental result shows that for i.i.d.

Gaussian noise, reconstruction with uniform weight or random weight performs

beyond that with Dirac delta weight, which is actually the traditional sampling

scheme of decimation. It shows that compared with decimation, the proposed375

generalized sampling scheme is more robust against noise, as analyzed in section

5.

6.5. Reconstruction of Approximated Bandlimited Signals

In this experiment, approximated bandlimited signals are tested to be re-

constructed by ILMR. The original signal is normalized to have norm 1 and the380

out-of-band energy is 10−4 or 10−8. The graph is partitioned into 358 center-

less local sets and the maximal cardinality of local sets is 8. Three kinds of

local weights are tested including case 1, 2, and 3. The convergence curves are
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Figure 6: Relative errors of ILMR under difference SNRs with various choices of local weights.

The noise associated with each vertex is i.i.d. Gaussian.

shown in Fig. 7, where each curve is the average of 100 trials. It is natural to

see that the steady-state error is larger for a larger out-of-band energy. It is385

mainly because ILMR cannot recover the out-of-band part of signals. However,

the out-of-band energy affects the reconstruction of the in-band part of signals,

which leads to the result that the relative errors for Dirac delta weights are

slightly larger than uniform weights and random weights. The in-band errors

are shown in Fig. 8, which depicts up to what extent the ILMR algorithm can390

recover the in-band part of the signals. The case with uniform local weights

has a smaller relative error, much better than that with Dirac weights. In other

words, reconstruction from local measurements performs beyond reconstruction

from decimation if the original signals are not strictly bandlimited.

6.6. Experiments with Real Data395

A time-varying real world data is used in this experiment. The dataset is

collected by Intel Berkeley Research Lab [44] including temperature, humidity,

light and voltage of 54 sensors which are sampled every 30 seconds. We use the
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Figure 7: The convergence curves for uniform weights, random weights, and Dirac delta

weights if the original graph signals are approximated bandlimited.

temperature of the sensors as the graph signal. A piece of data from 01:06:15 to

17:56:15 on February 28th, 2004 is extracted for missing data is less during the400

period of time. The MATLAB function scatteredInterpolant is used to inter-

polate the missing data and the result is regarded as the original time-varying

graph signal. According to the position of the sensors, we build the 4-NN graph

with the weights inversely proportional to the square of geometric distance. The

graph is divided into 15 and 9 centerless local sets for Nmax equals 4 and 8, re-405

spectively. Since the original graph signal is time-varying, ILMR is conducted

using the newly obtained local measurements in each time step. The relative

errors are illustrated in Fig. 9 for uniform and Dirac weights. Since the original

graph signal is not strictly bandlimited, the steady error is around 3% and the

curves reach the steady error in only several iterations. Uniform weights lead410

to a smaller steady error than Dirac weights. More measurements will also lead

to more precise reconstruction.
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Figure 8: The in-band errors for uniform weights, random weights, and Dirac delta weights.

7. Conclusion

In this paper, a sampling scheme named local measurement is proposed to

obtain sampled data from graph signals, which is a generalization of graph signal415

decimation. Using the local measurements, a reconstruction algorithm ILMR is

proposed to perfectly reconstruct original bandlimited signals iteratively. The

convergence of ILMR is proved and its performance in noisy scenarios is ana-

lyzed. The optimal local weights are given to minimize the effect of noise, and

a greedy algorithm for local sets partition is proposed. Theoretical analysis and420

experimental results demonstrate that the local measurement sampling scheme

together with reconstruction algorithm is more robust against additive noise.
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Figure 9: Relative errors for time-varying real sensor data using ILMR.

8. Appendix

8.1. Proof of Lemma 1

By the definition of G, and considering that {Ni}i∈I are disjoint, one has

∥f −Gf∥2 =

∥∥∥∥∥Pω

(∑
i∈I

(fNi − ⟨f ,φi⟩δNi)

)∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i∈I

(fNi − ⟨f ,φi⟩δNi)

∥∥∥∥∥
2

=
∑
i∈I

∥fNi − ⟨f ,φi⟩δNi∥
2
, (18)

where

fNi(v) =

f(v), v ∈ Ni;

0, v /∈ Ni.
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For i ∈ I, one has

∥fNi − ⟨f ,φi⟩δNi∥2 =
∑
v∈Ni

|f(v)− ⟨f ,φi⟩|2

=
∑
v∈Ni

∣∣∣∣∣∣
∑
p∈Ni

φi(p) (f(v)− f(p))

∣∣∣∣∣∣
2

≤
∑
v∈Ni

max
p∈Ni

|f(v)− f(p)|2 (19)

Denote

pi(v) = arg max
p∈Ni

|f(v)− f(p)|2.

Since Ni is connected, there is a shortest path within Ni from v to pi(v), which

is denoted as v ∼ v1 ∼ · · · ∼ vkv ∼ pi(v), and the length of this path is not

longer than Di. Then for v ∈ Ni, one has

max
p∈Ni

|f(v)− f(p)|2 =|f(v)− f(pi(v))|2

≤ (|f(v)− f(v1)|+ · · ·+ |f(vkv )− f(pi(v))|)2

≤Di

(
|f(v)− f(v1)|2 + · · ·+ |f(vkv

)− f(pi(v))|2
)
.

Therefore, one has425 ∑
v∈Ni

max
p∈Ni

|f(v)− f(p)|2 ≤ |Ni|Di

∑
p∼q;p,q∈Ni

|f(p)− f(q)|2, (20)

where p ∼ q denotes there is an edge between p and q. Inequality (20) holds

because each edge within Ni is reused for no more than |Ni| times. To study

the right hand side of (20), one has∑
p∼q

|f(p)− f(q)|2 =fTLf = fTUΛUTf = f̂TΛf̂

=
∑
λi≤ω

λi|f̂(i)|2 ≤ ωf̂Tf̂ = ω∥f∥2, (21)

where L,U, and Λ denote the Laplacian, its eigenvectors, and its eigenvalues,

respectively. The last inequality in (21) is because the entries of spectrum f̂ =

UTf corresponding to the frequencies higher than ω are zero for f ∈ PWω(G).
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Consequently, utilizing (19), (20), and (21) in (18), we have

∥f −Gf∥2 ≤
∑
i∈I

|Ni|Di

∑
p∼q;p,q∈Ni

|f(p)− f(q)|2


≤C2
max

∑
p∼q

|f(p)− f(q)|2

≤ωC2
max∥f∥2

and Lemma 1 is proved.

8.2. Proof of Proposition 2430

According to Lemma 1, we have ∥I−G∥ ≤ γ < 1 for PWω(G) when γ =

Cmax
√
ω < 1. Then G is invertible and 1− γ ≤ ∥G∥ ≤ 1 + γ for PWω(G). The

inverse of G is

G−1 =
∞∑
j=0

(I−G)j .

According to (2), f can be written as

f = G−1Gf =
∞∑
j=0

(I−G)j
∑
i∈I

⟨f ,φi⟩Pω(δNi) =
∑
i∈I

⟨f ,φi⟩ei, (22)

where

ei =
∞∑
j=0

(I−G)jPω(δNi).

Similarly, one has

f̃ =
∑
i∈I

⟨f̃ ,φi⟩ei.

Using (7) and f (0) = Gf , we have

f (k) = f + (I−G)k(f (0) − f) = f − (I−G)k+1f .

Therefore

f̃ (k) = f̃ − (I−G)k+1f̃ =
∑
i∈I

⟨f̃ ,φi⟩ei − (I−G)k+1f̃ . (23)
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If γ = Cmax
√
ω < 1, ei satisfies

∥ei∥ ≤
∞∑
j=0

γj∥Pω(δNi)∥ ≤ 1

1− γ
∥δNi∥ =

1

1− γ

√
|Ni|. (24)

According to (22), (23), and (24),

∥f̃ (k) − f∥ =

∥∥∥∥∥∑
i∈I

⟨f̃ − f ,φi⟩ei − (I−G)k+1f̃

∥∥∥∥∥
≤
∑
i∈I

|⟨n,φi⟩| ∥ei∥+ γk+1∥f̃∥

≤ 1

1− γ

∑
i∈I

√
|Ni| · |ni|+ γk+1 (∥f∥+ ∥n∥) .

Then Proposition 2 is proved.
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